Examining the Heterogeneous Throughput
Performance Landscape of QUIC Implementations

Michael Kénig§*, Sebastian Rustt”, Martina Zitterbart®, Bjorn Scheuermann?
$Tnstitute of Telematics, Karlsruhe Institute of Technology, Karlsruhe, Germany, {m.koenig, martina.zitterbart } @kit.edu
Technical University of Darmstadt, Darmstadt, Germany, {sebastian.rust@, scheuermann@kom}.tu-darmstadt.de

Abstract—QUIC, a UDP-based transport protocol that inte-
grates TLS for security and reduces connection latency, has gained
widespread adoption and is now underpinning a substantial share
of data traffic for major platforms like Cloudflare, Google, and
Facebook. Given its growing deployment across major Internet
platforms, there is growing attention on the performance potential
of QUIC implementations. This paper provides an in-depth study
of different QUIC implementations on a hardware testbed with
10 Gbit/s links. Our focus is on the achievable goodput in different
scenarios and with different implementations. In contrast to other
performance studies of QUIC, we investigated QUIC together with
multiple versions of HTTP and used multiple streams for the
data transfer. Our results show that merely choosing a different
application protocol (i.e., HTTP/3 versus HTTP/0.9) can reduce
goodput by as much as 27 %. Dedicated traffic generators can
further significantly boost achievable goodput, in cases more
than doubling the throughput obtained via HTTP. Moreover, our
analysis reveals that increasing the number of QUIC streams
may potentially double the throughput of multi-segment data
transfers, depending on the implementation. Additionally, certain
QUIC implementations can saturate a 10 Gbit/s link by increasing
packet sizes, indicating that QUIC packet processing speed,
rather than raw transmission capacity, is a primary bottleneck.
These findings highlight QUIC’s capabilities, limitations, and
implementation heterogeneity. The differences between QUIC
and QUIC+HTTP throughput emphasize the need for dedicated
performance tests. Understanding these distinctions is crucial for
analyzing, optimizing, and maximizing QUIC’s performance.

Index Terms—QUIC, Transport Protocols, Performance,
Benchmark

I. INTRODUCTION

The QUIC protocol, initially developed by Google and later
standardized by the IETF, was explicitly designed to minimize
latency, boost security, and eliminate head-of-line blocking that
affects the traditional TCP+TLS stack. Now widely adopted by
major players like Cloudflare, Google, and Facebook, QUIC
is the foundational protocol for HTTP/3, making it a crucial
component of Internet traffic.

In high-bandwidth scenarios, such as in data center networks
where data is transferred at speeds of 10 Gbit/s and more, cur-
rent research indicates that none of the open-source QUIC im-
plementations match the throughput achieved by conventional
TCP+TLS stacks. While these extreme environments may not
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be commonplace on the broader Internet, they are prevalent
in specific contexts. For instance, Microsoft’s specification of
QUIC for the SMB file-sharing protocol [1] highlights the
practical interest in using QUIC for high-bandwidth bulk data
transfer outside of HTTP.

Previous studies on QUIC performance in high-bandwidth
environments have highlighted the significant role of imple-
mentation heterogeneity in influencing throughput. We refine
and expand upon these findings by demonstrating that perfor-
mance variations are not solely driven by the QUIC implemen-
tation itself but also by how different applications leverage the
implementations. Our experiments show that choosing HTTP/3
over HTTP/0.9 can lead to a performance penalty of up to
27 %, depending on the specific implementation. Conversely,
utilizing multiple streams in HTTP/3 can enhance performance,
underscoring the importance of thoughtful application design
when selecting and structuring QUIC-based data transfers and
performance measurements.

Additionally, our findings show that QUIC implementations
exhibit distinct responses to fundamental network conditions,
such as round-trip time (RTT) and packet loss, as well as
to hardware acceleration features. For example, increasing the
MTU from 1500 to 9000 Bytes allowed some implementations
to thoroughly saturate a 10 Gbit/s link, while others showed
only modest improvements. These findings underscore the
impact of deployment choices on data transfer performance,
such as selecting the application protocol and determining
data chunk sizes. Additionally, the significant overhead of
QUIC packet processing highlights the need for QUIC-specific
offloading techniques.

Moreover, the substantial differences between QUIC-only
and QUIC+HTTP throughput emphasize the necessity of dedi-
cated performance tests for each use case. Performance results
from QUIC+HTTP do not necessarily reflect the pure transport-
layer capabilities of QUIC implementations, and vice versa.
These factors should be incorporated into evaluation criteria
when optimizing deployments for maximum throughput and
assessing the performance of QUIC implementations.

The following are the main contributions of this work:

First, we analyze the sustained throughput of popular open-
source QUIC implementations across different layers of the
network stack. Second, we identify potential performance bot-



tlenecks and highlight opportunities for optimization across
these layers.

o Application Layer: We find that the application layer intro-
duces substantial overhead compared to pure QUIC traffic.
Additionally, our analysis reveals significant performance
asymmetries between different QUIC implementations,
depending on the combination used on the sender and
receiver sides. Furthermore, we observe significant differ-
ences in throughput performance between HTTP/0.9 and
HTTP/3, depending on the implementation.

e QUIC Layer: Our findings reveal that throughput per-
formance varies across different QUIC implementations
and is influenced by the choice of traffic generators.
Additionally, we assess performance under diverse net-
work conditions, including increased delay and packet
loss. Our evaluation indicates that QUIC implementations
have evolved and improved considerably compared to
previous studies. However, despite these advancements,
their performance remains noticeably lower than TCP’s
while demanding significantly higher CPU resources.

o Lower Network Layers: We evaluate the impact of offload-
ing and increased packet sizes, demonstrating that these
optimizations can significantly enhance QUIC efficiency.

The remainder of this paper is organized as follows. In Sec-
tion II, we review existing performance evaluations of QUIC
implementations. Section III provides the necessary back-
ground information relevant to our study. Our methodology
and the rationale behind our in-depth analysis across network
layers are detailed in Section IV. We present and interpret our
experimental results for QUIC+HTTP in Section V and for
QUIC-only in Section VI. In Section VII, we summarize and
discuss the key insights derived from our study.

II. RELATED WORK

As QUIC was developed as the mandatory transport protocol
for HTTP/3, early performance measurements focused on web-
centric scenarios [2]] [13]] [4]].

The authors of [5] modify the QUIC Interop Runner (QIR)
to support QUIC performance measurements in various im-
plementation combinations, a strategy that we also use in our
work. However, their approach uses HTTP/3 as the primary
application protocol, meaning that their results reflect the com-
bined performance of both HTTP/3 and QUIC. In contrast, our
work examines how different HTTP versions affect achievable
throughput and, by eliminating confounding factors, provides
a clearer perspective on raw QUIC performance.

In [6]], the authors present detailed performance measure-
ments by implementing the methodology from [[7] specifically
for the msquic implementation. However, it is important to note
that the resulting data are exclusively for msquic and, therefore,
do not reflect the complex and complicated interaction between
different implementations.

The authors of [§] introduce a kernel bypass mechanism
using the Data Plane Development Kit (DPDK) in picoquic.

This modification nearly triples the achievable goodput in high-
bandwidth environments, reaching speeds of up to 20 Gbit/s.

The authors of [9] evaluate four QUIC implementations in
a 10 Gbit/s network environment, analyzing CPU usage on
the sender and receiver sides. Their study identified packet
I/O, cryptographic operations, ACK processing, and packet
reordering as the primary contributors to CPU consumption.
Additionally, they examined the impact of packet loss and
reordering on throughput, revealing that most QUIC implemen-
tations are susceptible to packet reordering events. However,
these measurements were conducted in 2020, and the landscape
of QUIC implementations has since evolved.

In [10]], we evaluate the sustained throughput performance
of six QUIC implementations in a high-bandwidth environment
with 10 Gbit/s links. Our findings reveal that while both TCP
and pure UDP can fully utilize the available bandwidth, none
of the tested QUIC implementations achieves the same level
of performance, with throughput rates ranging from 2.4 Gbit/s
to 8.22 Gbit/s. To further analyze performance bottlenecks, we
disable QUIC’s cryptographic routines in two implementations.
While this improves the performance, our results suggest
that cryptographic overhead is not the sole factor driving
performance differences. Additionally, when introducing link
perturbations such as packet loss and packet reordering, QUIC
implementations exhibit significant performance degradation
compared to TCP. Finally, our CPU utilization analysis indi-
cates that throughput limitations stem primarily from single-
core performance constraints. Moreover, process scheduling
across CPU cores was found to negatively impact transfer
rates, further highlighting the challenges in optimizing QUIC
implementations for high-speed networks.

III. BACKGROUND

This section provides the necessary background information
relevant to our study.

A. QUIC Streams and Frames

One of the design goals for QUIC is to mitigate head-of-line
blocking, a problem often seen with TCP in conjunction with
HTTP/2 multiplexing. To this end, QUIC establishes streams to
provide applications with an ordered and reliable byte-stream
interface. Each stream functions independently, so delays in
one stream do not block the progress of others, effectively
reducing head-of-line blocking. Beneath these streams, QUIC
encapsulates data into packets composed of discrete frames,
which act as lightweight transport abstractions carrying diverse
payloads such as user data, acknowledgments, and connection
management information.

B. Network Stack

Figure 1 illustrates the distinct paths a TCP segment and a
QUIC packet take from the receiving network interface card
(NIC) to the application, along with the corresponding ACK
segment or frame. When a TCP segment arrives at the NIC,
the packet is processed by the network driver, and the actual
payload is transferred to the TCP socket for the application. In
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Fig. 1: Simplified Comparison of QUIC and TCP Networ
Stack Traversal. Solid colored lines trace the path of network
packets through the stack, while dotted lines depict the flow of
application data.

response, the acknowledgment (ACK) for the received segment
is triggered within the kernel by the network driver, without
the need for context switches. In contrast, a QUIC packet
must traverse the entire network stack before reaching the
QUIC library via its UDP socket. The QUIC library then
generates an acknowledgment as an ACK frame, encapsulates
it within a new QUIC packet, and sends it within a QUIC
packet to the remote endpoint. Unlike TCP, which can process
acknowledgment more directly, this procedure requires two
context switches on the sender and one on the receiver—three
context switches in total—for each generated acknowledgment.
Unlike TCP, which benefits from kernel-level implementation
that allows direct, in-kernel acknowledgment processing, QUIC
implementations in user space cannot easily adopt a similar
strategy. This limitation stems from the fact that ACK frames
are sent as part of the payload of QUIC packets and may
be multiplexed with other frames. As a result, the entire
packet must be processed in user space, introducing additional
overhead.

C. Offloading

Offloading techniques can minimize the overhead of con-
text switches during QUIC packet transmission and reception.
These techniques primarily operate at the UDP layer and are
not specific to QUIC. For example, Generic Segmentation
Offload (GSO) [11] allows the sender to batch multiple UDP
datagrams and write them to the UDP socket with a single
context switch. The NIC subsequently segments this batch into
individual IP packets, although the QUIC implementation must
still generate a proper QUIC header for each packet. Similarly,
Generic Receive Offload (GRO) reduces context switches on
the receiving side by batching multiple UDP datagrams. As
with GSO, GRO works at the UDP level, so the QUIC
implementation is responsible for processing each individual
QUIC packet.

As discussed in Section VI-C, support for these offloading
techniques generally improves throughput in QUIC imple-
mentations, though the magnitude of the benefit can vary
significantly among different implementations.

Emulation of
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Fig. 2: Testbed
TABLE I: Testbed Hard- and Software

CPU Intel Xeon W-2145, 3.7-4.5 GHz, 8 Cores / 16 Threads
RAM 128 GB (4x 32 GB DDR4 with 2666 MT/s)
NIC Intel X550-T2

oS Linux Ubuntu 22.04.1 LTS
Kernel  5.15.0-56-generic

IV. EVALUATION METHODOLOGY

To investigate the performance of the QUIC implementa-
tions, we set up a 10 Gbit/s testbed as depicted in Figure 2.
The testbed consists of two endpoints, one software switch
and one hardware switch. The sender endpoint is connected via
the hardware switch to the software switch, and both forward
packets between sender and receiver endpoint. 10 Gbit/s links
interconnect all systems. The sender, receiver, and software
switch use identically configured hardware and software, shown
in Table I, and are configured according to recommendations in
[12]] [13[] [[14]. The software switch uses NetEm [|15]] on the path
from the sender to the receiver to introduce artificial delays,
packet loss, or to limit the bottleneck bandwidth. We cross-
validated the results attained by using NetEm with TLEM [16]
and achieved the same qualitative results. Therefore, in the
following, we only report the results of NetEm used on the
software switch. Using the software switch, we configure dis-
tinct characteristics for the network link to the receiver. These
network characteristics, denoted as scenario A-&, correspond
to the values listed in Table II.

For all QUIC implementations, we used Cubic [[17] as the
congestion control algorithm (CCA) since other CCAs, such
as BBR[18], are not supported in all QUIC implementations.
Furthermore, we increased the send and receive buffer sizes
for UDP, as the default values are known to be insufficient for
optimal QUIC performance [19]. Unless otherwise specified,
we used an MTU of 1500 bytes. To log throughput and CPU
utilization, we use pidstats [20] and CPUnetLOG [21]], and we
use TCPlog [22] to record TCP internal metrics.

To evaluate the performance of the integrated QUIC+HTTP
stack, we use the Quic Interop Runner (QIR) introduced by
Seemann and Iyengar [23]], a framework designed for testing
the interoperability of QUIC implementations. Jaeger et al. [5]
subsequently extended the QIR to support bulk data transfer
on bare-metal systems instead of simulated networks, thereby
highlighting the impact of various QUIC implementation pairs
on overall transmission performance.

Building on Jaeger et al.’s modifications, we enhance our test
framework with a toggle for selecting HTTP/3 or HTTP/0.9,
an option to transfer multiple files over an established QUIC



connection for both protocols, and a configurable parameter
for concurrent stream control. This enables us to cross-test
different QUIC implementations in respect to their performance
in combination with HTTP, and the impact that segmenting files
into multiple chunks and controlling for the allowed number
of concurrent streams has. Note that the implementation of
HTTP/0.9 in the tested QUIC implementations is solely in-
tended for compatibility testing with QIR and is not designed
for production use. The transfer test used in QIR requires
implementing an HTTP-GET request using HTTP/0.9 syntax,
along with the appropriate ALPN to establish the connection.
All transmissions occur over a single QUIC connection, with
each HTTP/0.9 request using one QUIC stream. QIR allows
multiplexing of different requests, but does not require it. The
results of our experiments, which compare different HTTP
versions, segmented file transfers, and concurrent stream limits,
are presented in Section V-A and Section V-B.

To isolate QUIC performance from the influence of HTTP,
we employ dedicated QUIC traffic generators to assess the
QUIC implementations independently. These generators are
available in two variants: integrated and generic. Some im-
plementations include an integrated traffic generator devel-
oped alongside the QUIC implementation, meaning it works
exclusively with that particular implementation. In contrast,
generic tools, such as quicperf [24], support multiple QUIC
backends. Both types of generator allow for the measurement
of sustained goodput for supported QUIC implementations.
Not all QUIC implementations include an integrated traffic
generator or are supported by quicperf; support is denoted in
Table III. A comparison between the goodput achieved with the
QUIC+HTTP stack and that measured using traffic generators
is presented in Section VI-A, and Section VI-B discusses the
impact of different traffic generators on the performance of the
same implementation.

Building on our initial QUIC traffic generator experiments,
we further investigate how hardware offloading and larger
packet sizes affect the throughput performance of various QUIC
implementations (see Section VI-C and Section VI-D) For
this purpose, we repeat the traffic generator experiments with
GSO and GRO enabled and increase the network MTU to
9000 bytes. Furthermore, we study the impact of different link
characteristics on the throughput performance of the QUIC
implementations, we varied the RTT, probability of packet
losses, packet reordering, and packet errors (i.e., bit flips)
across the various scenarios by configuring the software switch
with values listed in Table II.

Lastly, we compare the CPU usage patterns of the integrated
traffic generator and quicperf to identify potential bottlenecks
in Section VI-F and examine throughput improvements over
time for various QUIC implementations in Section VI-G.

V. CoMBINED QUIC & HTTP PERFORMANCE

To evaluate QUIC’s performance across HTTP versions, we
employ QIR to cross-test various QUIC implementations by
retrieving a single file using HTTP/3 or HTTP/0.9, respectively.

TABLE II: Varied Link Characteristics Across Scenarios

Scenario A Scenario B Scenario C  Scenario D Scenario £
Unmodified RTT Loss Reordering  Errors
- 0...300ms 0...2.5% 0...2.5% 0...25%

TABLE II: Evaluated QUIC Implementations

Integrated Traffic ~ Quicperf
Implementation Language Generator Generator
Isquic [25] C v v
picoquic [26] C v v
ngtep2 [27] C - v
quiche (Cloudfare) [28]  Rust - v
quic-go [29] Go - -

In addition, we examine how partitioning the data into multi-
ple chunks and increasing the number of concurrent streams
influence overall throughput.

A. Single File

To establish a performance baseline for further evaluation,
we conducted throughput tests on single-file transfers over
HTTP/3 by replicating the methodology described by Jaeger
et al. The transmitted file is 8 GB large. Our network config-
uration was implemented using scenario 4. Figure 3 shows
the achieved goodput between various QUIC implementations.
The server implementation is on the x-axis and the client on
the y-axis. The achieved goodput varies significantly depending
on the client—server pairing, with ngtcp2—ngtcp2 delivering the
highest throughput at 4172 Mbit/s and the slowest pairing
measured is quic-go—quiche with 1220 Mbit/s.

Figure 4 shows the results of our experiments comparing
the different HTTP versions. The heatmap shows the average
change in throughput observed when switching from HTTP/3 to
HTTP/0.9 in the QIR experiment runs. Positive numbers denote
an increase and negative numbers a reduction in throughput. To
evaluate the significance of these improvements, we performed
a t-test and rejected the null hypothesis when p > 0.05. Non-
significant differences are indicated by patterned fields in the

quiche 2537 3192 2486 1248 2972
quic-go 1318 1264 1346 1291 1220
E picoquic 1903 1752 1518 1249 1335

© ngtcp2 2523 3085 1451
Isquic 2473 2375 2380 1434 2233

& ng&\\ i &'\@'%0 &‘Q\@
Server
i

Goodput (Mbps) 2000 3000 4000

Fig. 3: HTTP/3 Single File experiment results
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Fig. 4: Improvement in throughput for using HTTP/0.9 over
HTTP/3. Patterned fields indicate that the measured difference
is not statistically significant.

heatmap. In general, switching to HTTP/0.9 results in perfor-
mance gains. All pairs with statistically significant differences
showed improvements ranging from 1.92% for the Isquic-
ngtcp2 pair to 27.11% for the quic-go-quiche pair. During
our experiments, we observed that none of the implementa-
tions tested complied with HTTP/0.9 behavior but only with
protocol messages. Instead of establishing a new connection
for every HTTP/0.9 request, implementations mimick their
HTTP/3 behavior, ranging from sequentially requesting files se-
quentially to fetching all files concurrently. Consequently, any
performance loss is attributable to the specific implementation
of HTTP/3, given that the underlying transport-level behavior
remains unchanged.

Take away: The application protocol and its implementation
can have a profound impact on performance measurements. It is
essential to control both the application protocol and its specific
implementation to obtain accurate results for the performance
of a QUIC implementation.

B. Multiple Files and Streams

Figure 5 shows the change in throughput when requesting
8 GB of data, split into 100 chunks of size 80 MB each, over
HTTP/3. Positive numbers indicate an increase, while negative
numbers denote a decrease in throughput. Although most of
the measured differences are not statistically significant, we
observe that especially quic-go as a client achieves up to
11.17 % more throughput with chunks. This observation is not
consistent with all server pairs. With [squic as the server, we
do not measure significant differences, and with quic-go as the
server, we even measure a decrease of —5.88 %.

To assess the impact of stream count on measurements, we
controlled the maximum concurrent streams during transmis-
sion. We used Isquic, quiche, and quic-go, as they enforced the
set stream limit. Due to time constraints, testing was limited
to identical QUIC implementations for both client and server.
Figure 6 presents the results of downloading segmented chunks
using multiple streams. The x-axis represents the maximum

quiche -3.95 0.05 -0.46 -0.29 ;0.83
5 quic-go 9.67 -5.88 1117
£ picoquic o1 161 1445
N ngtcp2 2.22 0. 17 -0,76
Isquic -1.06 1.30 “11.37
& @f& & &0 &\&
Server
Throughput change (%) ——
-10 0 10 20

Fig. 5: Comparison of Throughput Performance: Requesting
8GB of data distributed across 100 files versus a single file.
Patterned fields indicate that the measured difference is not
statistically significant.
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Fig. 6: Average throughput for downloading 100 chunks a
80MB with a varying number of streams

streams used, while the y-axis shows goodput. Box plots illus-
trate data distribution: boxes indicate the 25th—75th percentiles,
the line marks the median, and whiskers extend to the 5th and
95th percentiles, covering 90% of the data.

Utilizing more than one stream yields better performance for
all tested implementations. Notably, downloading 100 chunks
over a single concurrent stream reduces quiche’s throughput
by over 50% compared to transferring a single large file on
one stream in the HTTP/3 experiment. With single-stream con-
straint, throughput falls from 3.097 Gbit/s to below 1.5 Gbit/s.
However, when using concurrent 100 streams, the throughput
is comparable to the HTTP/3 single-file transmission. Quic-go
showed slight gains with 2-8 streams, which vanished with
higher stream counts. Lsquic numbers remained unchanged.

Figure 7 shows the CPU usage during the client-server
tests. The measurements were taken using pidstat [20], which
aggregates CPU usage for processes and their threads but does
not indicate core allocation; this detail is important since core
pinning can boost performance [19]]. Quic-go leverages multiple
cores, spiking CPU usage to about 400 % with 32 or more
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Fig. 8: Impact of HTTP and Traffic Generator on QUIC
Throughput (Scen. A). Lack of support causes missing bars.

streams, while the server remains steady between 160 % and
190 %. Nevertheless, as shown in Figure 6, the increased CPU
usage does not translate to higher throughput. In contrast, both
Isquic and quiche do not exceed 100% CPU, indicating a
lack of multithreading, yet they achieve higher goodput than
quic-go. The quiche client and server average between 50 %
and 90 % CPU usage with increasing streams, with the server
slightly lower than the client, while Isquic reaches 100 % on
the server when using more than one stream and uses slightly
less on the client.

Take away: Splitting a fixed data volume into multiple
segments can yield an increase in overall throughput of up to
11 % during transmission. Furthermore, increasing the number
of concurrent streams has been observed to nearly double
the achieved throughput, as demonstrated in the quiche im-
plementation. These minor modifications significantly affect
throughput, making it essential to control for them in any QUIC
performance assessment.

VI. QUIC PERFORMANCE

To evaluate QUIC performance without the potential over-
head introduced by HTTP-specific code, we tested four QUIC
implementations using QUIC traffic generators.

A. Performance of QUIC vs. QUIC+HTTP/3

Figure 8 shows the throughput of Isquic, ngtcp2, and
picoquic when using traffic generators versus QUIC+HTTP/3
using the QIR from Section V-A. For Isquic and picoquic,
integrated traffic generators are used; quicperf is used for all.
In every case, the traffic generators achieve higher throughput
than QUIC+HTTP/3, though the extent of improvement varies
by implementation. picoquic’s throughput more than doubles,
from 1.52 Gbit/s to 3.88 Gbit/s, whereas ngtcp2 shows a mod-
erate increase from 4.17 Gbit/s to 4.94 Gbit/s. This suggests
that using the QUIC traffic generators circumvents some of
the processing overhead and inefficiencies inherent in the
corresponding HTTP/3 implementation, enabling the QUIC
transport layer to achieve higher throughput.

Take away: We conclude that throughput comparisons of
QUICH+HTTP traffic within the QUIC Interop Runner (QIR)
may not accurately reflect the achievable transport-layer perfor-
mance of QUIC implementations, and vice versa. Throughput
values can vary significantly even for the same QUIC imple-
mentation, highlighting the need for distinct evaluation methods
for each use case.

B. Role of Traffic Generators

To evaluate the impact of different traffic generating appli-
cations, we compared the throughput of Isquic and picoquic
by generating traffic with both the respective integrated traf-
fic generators and the generic traffic generator quicperf. We
patched quicperf to support more recent versions of the QUIC
libraries, as well as to support GSO/GRO offloading. For
both traffic generation methods, we used identical versions
of each QUIC implementation and architecture-specific build
optimizations. The results for both Isquic and picoquic indicate
better throughput performance when using the traffic generators
provided by the respective QUIC library authors compared to
the generic quicperf generator (shown in Figure 8). Lsquic
performs slightly better with its integrated generator (i.e.,
from 3.64 Gbit/s to 3.88 Gbit/s), while picoquic’s throughput
significantly improves by over 1.2 Gbit/s (i.e., from 3.6 Gbit/s
to 4.81Gbit/s) in comparison. Nevertheless, the maximum
throughput of 4.94 Gbit/s is achieved by combining ngtcp2
with the generic quickperf generator. Profiling results using
perf indicate that quicperf experiences a higher number of soft
interrupts, performing up to 25 % more syscalls. This may be
attributed to suboptimal buffer allocations, leading to more fre-
quent malloc calls for QUIC packet handling. Thus, similar
to the variations caused by different HTTP implementations
and their overheads, differences in traffic generator quality and
their interaction with QUIC libraries impact throughput results.

Take Away: To better compare the transport-layer perfor-
mance across different QUIC implementations, a standardized
traffic generator—similar to iperf3 for TCP—is essential, as
variations within specific generators can introduce additional
variability. Furthermore, application developers must be mind-
ful of potential throughput losses resulting from inefficient
integration of QUIC implementations.
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C. Impact of GSO/GRO Offloading

To evaluate the impact of offloading, we compared the aver-
age throughput for three QUIC implementations Isquic, ngtcp2,
and quiche that support enabling and disabling offloading.
Implementations with offloading support can transfer up to
64 KiB in a single operation. By reducing the time spent trans-
ferring numerous small packets, enabling offloading improves
the throughput of two of the three tested implementations.

Figure 9a shows the average throughput with GSO/GRO
offloading enabled and disabled. In this setup, quiche achieves
an improvement of 0.66 Gbit/s, from 3.5 Gbit/s to 4.16 Gbit/s
and ngtcp2 gains 1.2 Gbit/s, from 3.7 Gbit/s to 4.94 Gbit/s.
Isquic shows no differences as it does not support GSO/GRO
offloading. Offloading yields smaller gains than larger packet
sizes, likely due to the lack of QUIC-specific support. While
GRO and GSO help aggregate and segment UDP packets,
QUIC libraries still create and process headers for each 1500-
byte packet, matching the standard MTU.

Take away: In QUIC implementations that support them,
generic offloading techniques such as GSO and GRO reduce
processing overhead and improve throughput. However, QUIC-
specific offloading techniques could most certainly yield even
more significant throughput gains.

D. Impact of Packet Size

For QUIC implementations that support jumbo frames by
using 9000-byte packets instead of the standard 1500-byte
packets, we compared throughput performance for both sizes.
Figure 9a shows the average throughput of the three QUIC
implementations [squic, ngtcp2, and quiche for both packet
sizes. All implementations show higher throughput rates when
using jumbo frames, as less time is spent processing smaller
packets (i.e., generating QUIC headers). However, the results
reveal significant differences in performance. For instance,
while quiche shows only a modest improvement (i.e., from
4.16 Gbit/s to 5.84 Gbit/s), Isquic demonstrates a much more
substantial increase, more than doubling its throughput from
3.6 Gbit/s to 9.19 Gbit/s. Ngtcp2 also profits from larger packets
and doubles the achieved throughput from 4.94 Gbit/s with only
offloading enabled to 9.97 Gbit/s with offloading and an MTU
of 9000 bytes, thus finally saturating the 10 Gbit/s link.

Take away: Compared to previous studies, our packet size
evaluations quantitatively demonstrate the significant overhead
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Fig. 10: Avg. Throughput for Different Link Characteristics

of QUIC packet processing and underscore the performance
gains of using jumbo frames, as well as the potential benefits
of future QUIC-specific offloading techniques.

E. Throughput with Different Link Characteristics

Previous studies have reported significant throughput degra-
dations in the presence of increased round trip times (RTTs),
packet loss, reordering, or errors [9][10]. To examine the
impact of different link characteristics regarding throughput,
we emulate different delays, packet losses, and reordering rates
by configuring the software switch with values listed in Table II
(Scenarios B-E).

1) Round Trip Times (RTTs): Figure 10a illustrates the
average throughput of the tested QUIC implementations as
RTTs increase. All implementations experience a decline in
throughput as the artificially introduced RTT grows. However,
the impact varies significantly across the implementations.
While the throughput of ngtcp2 and Isquic decreases gradually
and consistently as RTT increases, quiche sees a sharp decline
as soon as 5ms of additional delay are introduced, dropping
from 4.16 Gbit/s to just 0.15 Gbit/s.

2) Packet Losses, Reordering, and Errors: The average
throughput remains relatively stable or decreases only slightly
for all but one implementation (quiche) when packet loss
becomes more frequent, as illustrated in Figure 10b. Similar
qualitative trends were observed with increasing packet re-
ordering and packet errors (i.e., bit flips), but are not shown
here. Compared to the severe throughput degradations reported
in previous studies [9][10], our results highlight significant
performance improvements in these scenarios just by using
more recent versions of the QUIC implementations.

Take away: Our results indicate that most tested QUIC
implementations handle increased RTTs, packet loss, packet re-
ordering, and packet errors significantly better than in previous
evaluations [9]][10], even when tested under the same hardware
and software setup with only more recent implementation
versions.

F. Role of CPU Resources

We used Linux’s profiler perf and pidstat to gather statistics
about CPU usage, cache efficiency, and various hardware and
software events to help diagnose performance bottlenecks.
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For all our experiments, we recorded the CPU utilization per
(logical) CPU core on the sender and receiver sides.

Figure 11 illustrates the CPU time distribution across
idle, user, and kernel (sys) time for Isquic. From left to
right, it compares time distributions for traffic generated by
quicperf (quicperf-lsquic) and Isquic’s integrated traffic gen-
erator (Isquic). For both traffic generators, the figure presents
CPU time allocation on both the sender and receiver sides.

The first observation is that receivers spend a significant
portion of CPU time idling (37.5-37.0 %), whereas both sender
systems remain nearly fully utilized, with only 2-2.4 % idle
time. This suggests that throughput limitations stem from the
sender rather than the receiver. Furthermore, CPU utilization, as
shown in Figure 12a, reinforces this finding, with one CPU core
on the sender side reaching 100 % utilization throughout the
transfer. Nevertheless, only core is actively used. In contrast,
the receiver’s CPU utilization, shown in Figure 12b, exhibits
two active logical cores, with overall utilization fluctuating
(depicted by the dashed black line) between 60 % and 85 %.

Moreover, on the sender side, quicperf-Isquic shows signif-
icantly higher kernel (sys) time (74.1 %) compared to Isquic
(64.5%). This is likely due to suboptimal buffer alloca-
tions, leading to a higher frequency of system calls, such
as malloc (). For transfers with larger packet sizes (e.g.,
9000 bytes instead of 1500 bytes) as discussed in Section VI-D,
we observed a significant reduction in user-space processing
time, while CPU time spent in the kernel—primarily for
sending—increased. In contrast, our offloading experiments
in Section VI-D showed only a modest increase in kernel
time relative to the user time when GSO/GRO offloading was
enabled. Our findings confirm that generic offloading improves
performance, but much of QUIC processing still focuses on

packet handling, so tailored offloading could significantly boost
throughput.

Take away: The throughput is primarily limited by the
sender side rather than the receiver. Specifically, the sender side
is constrained by single-core performance, as the implemen-
tations do not leverage multi-core capabilities. Furthermore,
while a substantial portion of CPU time is spent on UDP packet
processing, an even larger share of the QUIC implementation’s
CPU cycles is consumed by QUIC packet processing.

G. Performance Improvements Over Time

In addition to the improved throughput observed when
handling loss and reordering events (as described above), we
compared the maximum throughput performance of picoquic
and Isquic in scenario A, using evaluation results from previous
works [10]. Figure 9b illustrates the average throughput of
picoquic and Isquic in 2023 and 2025. Over this period, both
QUIC implementations have shown substantial improvements
regarding throughput. Specifically, picoquic’s throughput in-
creased from 2.68 Gbit/s to 3.88 Gbit/s (a 44.8 % improvement),
while Isquic’s throughput slightly rose from 4.06 Gbit/s to
4.81 Gbit/s (a 18.5 % increase).

Take away: While still not matching TCP in terms of
throughput, the evaluated QUIC implementations continue to
improve. Average throughput has increased significantly in
some cases, and the handling of packet loss, reordering, and
errors has also improved considerably compared to previous
studies [9] [[10].

VII. SUMMARY & DISCUSSION

Our QUIC throughput evaluations reveal several opportuni-
ties for enhancing performance across protocol layers interact-
ing with its implementations. Notably, we observed substantial
throughput variability between the tested implementations, de-
pending on the use case and scenario. Cross-performance tests
also showed striking asymmetries, with outcomes significantly
influenced by the sender-receiver implementation pairings. In
addition, the overhead introduced by HTTP/3 can lead to
considerable throughput degradation compared to HTTP/0.9
transfers, but again with asymmetries between the different
implementation. These findings underscore the importance of
controlling the application layer when measuring performance.

Furthermore, the tested QUIC implementations demonstrate
significantly different throughput results between QUIC-only
and QUIC+HTTP scenarios. Therefore, we emphasize the need
for a clearer distinction between QUIC-only and QUIC+HTTP
performance benchmarks, depending on the intended use case:
evaluating pure transport-layer performance (QUIC-only) or
assessing real-world web performance (QUIC+HTTP). In ad-
dition, these differences caused by the application layer must
be taken into consideration in future tests regarding the per-
formance of QUIC implementations. Integrating QUIC-only
performance tests alongside existing QUIC+HTTP benchmarks
within the widely used QIR would establish a more compre-
hensive evaluation framework, ensuring that both use cases are
adequately covered.



Moreover, comparing the throughput performance of dif-
ferent traffic generators for the same QUIC implementations
reveals significant variations. These differences stem not only
from the implementations themselves but also from how ef-
fectively each traffic generator interacts with the respective
QUIC library. Thus, adopting a standardized traffic generator—
akin to iperf3 for TCP—would enhance the consistency and
comparability of QUIC throughput performance benchmarks.

Enabling GSO/GRO offloading and larger packets sig-
nificantly reduces CPU overhead, boosting throughput. No-
tably, our results across different packet sizes underscore the
dominant overhead introduced by QUIC packet processing—
surpassing that of UDP packet handling, which can already be
partially mitigated through GSO/GRO offloading. Implement-
ing QUIC-specific offloading could further reduce overhead and
significantly enhance performance.

QUIC implementations have notably advanced, showing
improved throughput compared to earlier studies, reduced
degradation at higher RTTs, and better handling of packet loss
and reordering, bringing performance closer to TCP levels.
However, when compared to typical TCP performance results,
the evaluated QUIC implementations still fall short in terms
of sustained throughput rates. To bridge this gap, support for
QUIC-specific offloading, Jumbo Frames, and proposed kernel-
bypass techniques, such as XDP [30] or DPDK [31]], could
significantly improve performance. This remains relevant even
where 10 Gbit/s single-flow connections are rare. As QUIC
adoption grows, even minor efficiency gains can notably reduce
CPU usage, power consumption, and operational costs, while
improving user throughput.
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