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Abstract—The design and specification of new network pro-
tocols that aim at solving issues of currently deployed ones is
a long, tedious process. It requires Internet-wide consensus and
often leads to compromises. Although stable and interoperable
implementations of protocols are part of the protocol specification
process, new protocols suffer from another problem: acceptance
and use by application developers. In order to solve this problem,
we proposed NENA, a framework that aims at a better decoupling
of applications and networks. It allows to run multiple network
stacks in parallel, completely transparent to applications. In
addition, it provides an implementation environment suitable for
component-based protocols which offers ideal conditions for pro-
tocol composition approaches. In this paper, we describe aspects
of our implementation that provide the necessary abstractions
for NENA’s goals: a protocol and network agnostic API relieving
the application programmer from networking specific decisions,
and a message passing system for component-based protocols
with flow control capabilities that interact with flow control
mechanisms of network protocols.

I. INTRODUCTION

The evolution of the Internet from a small network of static
computers used to transfer electronic mail and small files to a
worldwide network with millions of nodes and thousands of
different applications poses a challenge for the current Internet
architecture. The current Internet architecture was not designed
for mobility, security, group and real-time communication, or
special use cases like sensor-actuator networks and machine-
to-machine communication, which are becoming more and
more relevant today. Additionally, the introduction of new
features in the network is difficult which is shown by the slow
adoption of new protocols like SCTP and IPv6 or the lack of
global multicast services or Quality-of-Service guarantees.

These problems gave birth to many Future Internet research
projects like the G-Lab project [1]. Within the G-Lab project,
we worked on a Future Internet scenario in which nodes do
not connect to a single, general-purpose network. Instead,
nodes connect to different networks, each tailored to a specific
application or use case. These application-tailored networks
are based on individual network architectures and use network
protocols that are optimized for the respective application
or use case. Examples for such networks are online-banking
networks (optimized for security), video streaming networks
(optimized for real-time transfers to many users), content dis-
tribution networks (optimized for efficient data distribution),
and online gaming networks (optimized for low latency). In
this Future Internet scenario, a node connects to a network
dynamically at runtime whenever the node accesses content
or services that are offered within the network. As part of this
process, an end-system acquires all necessary protocols and

sets up a link to the network in order to eventually access the
content or service.

Network virtualization and protocol composition are en-
ablers for this scenario. Network virtualization [2] allows us
to instantiate logical networks on top of existing network in-
frastructure. The operational benefit of network virtualization
is that networks can be instantiated and modified on demand
and relatively fast (compared to the installation/modification
of physical network infrastructure). Additionally network vir-
tualization provides technical benefits. Virtual networks can
be operated in parallel and are isolated from each-other. This
means network virtualization can improve resource utilization
(due to statistical multiplexing) and errors in one virtual
network do not impact other virtual networks. Additionally,
virtualization provides the flexibility to adapt and migrate
virtual resources if the underlying infrastructure changes, e. g.,
due to maintenance or failures.

Protocol composition (where some recent approaches are,
e. g., [3], [4]) allows for a modular design of protocols by
utilizing building blocks (BBs). This allows to re-use existing
BBs as well as eases the testing and exchange of protocol
functionalities if a functionality provided by a BB does not
fulfill its expectations. Ideally, this concept enables a protocol
design in which the protocol designer describes the informa-
tion and control flow between (existing) protocol mechanisms
rather than (re-)implementing everything from scratch.

As an experimental environment for such abstractions, we
developed the runtime framework NENA (Netlet-based Node
Architecture, [5]). NENA is executed on each network node
and allows to operate different networks and their respective
protocol architectures in parallel. Applications use NENA as
a replacement for the current network stack. Applications
communicate through NENA and thus initiate communication
with remote services or content by using its API. The API
increases the communication abstractions by hiding network
details from the applications: application programmers no
longer have to deal with name-to-address resolution, protocol
selection, or multi-protocol support.

In this implementation-oriented paper, we present our expe-
riences developing the run-time framework NENA itself. We
show the challenges we faced in this process and our solutions.
Furthermore, we describe open issues and indicate possible
solutions we are tackling in current and future work.

The remainder of this paper is structured as follows:
Section II gives a short overview of the Future Internet
scenario that we are considering in order to point out the
relevance of the multi-network approach. Section III outlines
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Fig. 1. Future Internet scenario overview.

the architecture of the NENA framework. Then, we put two
aspects of the NENA framework into the focus of this paper:
The implementation of the application interface that replaces
the socket API (Section IV) and the implementation of a
message passing system with networking-specific flow control
(Section V). Section VI introduces a simple architecture serv-
ing as an example for a network protocol suite implemented
within NENA. Finally, we recap design decisions and issues
in Section VII.

II. SCENARIO

In the global picture introduced in the previous section, the
following main actors are involved (Figure 1): The Service
Provider, the Virtual Network Provider, and the End-User. The
Service Provider (SP) creates an online service and designs
a complete network solely for this service. Based on his
requirements, he selects suitable networking paradigms, cor-
responding protocols, resources, and topologies. The Virtual
Network Provider (VNP) creates virtual networks based on
the resource and topology requirements given by the SP. He
constantly monitors the resource usage of the virtual networks
and may optimize the usage of his infrastructure based on the
monitored data of all networks he runs. The End-User (EU)
is the service customer: accessing the new service must be as
easy as possible for him, preferably using user interfaces and
applications he is accustomed to.

When an end user wants to access the service that is offered
in a new application-tailored network, the end user’s node
retrieves meta-information about the new network from a
global mapping service based on an URI. Then, the end user
node establishes a virtual link to the virtual network. After this,
the end user node queries the required components (protocols)
from the mapping service. Using the retrieved information, the
node then downloads, validates, and instantiates the protocols,
and the new network is ready to be used by any appropriate
user application. A more detailed description of this process
can be found in [6] and [7].
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Fig. 2. Netlet-based Node Architecture (NENA)

III. FRAMEWORK (NENA)

In this section, we present an overview of the NENA
framework and its relevant components. For more details about
the concepts, please refer to [8].

NENA (Figure 2) is a runtime framework that allows nodes
to simultaneously connect to multiple networks at the same
time. These networks can be based on different network
architectures using specialized network protocols. Application
access is provided by an API that abstracts from networking
details: Instead of providing network addresses and protocols,
applications specify globally unique names as URIs to initiate
communication with the content, service, or host associated
with the name. NENA then performs network and protocol
selection transparently to the application. Additionally, ap-
plications can influence this selection by specifying applica-
tion requirements via the API. These requirements can, for
instance, contain Quality-of-Service parameters, specify the
requested data format (i.e., content-type), or simply specify
traditional requirements such as reliable transport. More in-
formation about the API can be found in Section IV.

Protocols or complete protocol stacks in NENA are encapsu-
lated in so-called Netlets. The Netlet Selection component per-
forms the selection of networks and protocols. The requested
name is used to select a suitable network, while the application
requirements are used to select a suitable protocol (Netlet).
This is a two-step process, where first each architecture is
inquired to deliver a set of Netlet candidates that are able to
fulfill the request. This can be seen as an filtering process
that takes the URI and the mandatory requirements of the
request into account. Second, the “best” candidate is chosen
based on optional requirements and network properties (such
as bandwidth or delay) if applicable.

Below the Netlet Selection component, the components of
each currently active network are located. Multiple networks
with individual architectures can be in use on a node at



the same time. Each network architecture instance consists
of a set of Netlets, a multiplexer, and a set of network
accesses. An architecture multiplexer constitutes the base-
layer of a network stack, performs Netlet multiplexing, and
– depending on the architecture – implements addressing and
forwarding mechanisms. An architecture that, for instance,
realizes a late-binding of names to addresses, may do name-to-
address translation and network access selection here. Network
accesses represent a physical or logical Network Interface Card
(NIC). Thus, multiplexing of multiple virtual networks over
the same physical network has to be realized outside of NENA
(e. g. via VLANs). The Network Access Manager controls
the creation and removal of network accesses and notifies
the respective multiplexers. Although the Network Access
Manager is depicted as an intermediate layer, multiplexers
and network accesses communicate directly once they are
associated with each-other.

For management and maintenance purposes, NENA also has
a network independent repository and management compo-
nents. The repository component loads and instantiates Netlets
and multiplexers from external libraries. The management
component is the central entry point for management requests,
which means that it propagates requests to the respective
architectures and collects monitoring information from dif-
ferent levels (node-wide, architecture-specific, or protocol-
specific) [9].

IV. API

A crucial part of the scenario described at the beginning
of the paper is to allow independent evolution of both,
applications and networks. The design goal of the NENA
API is abstracting from network details. This means, that
the required networking knowledge like address formats and
protocols is removed from the applications and pushed down
below the API. Furthermore, the API should be generic enough
to cope with different communication paradigms like host-
based or content-centric communication. The API should be
flexible with respect to the introduction of new networks
and protocols. Both of which should not require to change
existing applications. In order to achieve these goals, we
use globally unique names and moved name resolution and
protocol selection below the API.

A. Primitives

Based on the proposals in [10] and [11], we implemented
an API fulfilling the before-mentioned goals. Its usage pattern
is similar to today’s socket API: a communication end-point
is created with a primitive that returns a handle on which
read/write operations may be performed. This basic pattern
has proven to be very portable. A C-library can be created
easily and eventually integrated in implementations for other
programming languages. In addition, existing applications can
be ported from the socket API to the NENA API without
changing much in the I/O logic. Any high-level abstractions
such as callback-based interfaces for event-driven applications

Fig. 3. API Overview.

can be realized with the destination languages’ means (as it is
done today with the socket API).

Instead of providing only one primitive to create a commu-
nication end-point, we provide three (Figure 3): CONNECT,
GET, and PUT. While CONNECT matches today’s socket()
semantics closest, GET and PUT are introduced in order
to support the many contemporary applications, that use a
RESTful interface (e.g., HTTP) as their basic communication
abstraction [12]. By providing those methods at the API level,
network services are no longer bound to use HTTP as their
basic communication abstraction, and eventually new commu-
nication paradigms such as Content-Centric Networking [13]
can be easily introduced.

The application providing service or content as a server uses
BIND in order to announce its availability to serve requests.
Instead of well-known port numbers to identify services, the
application specifies an URI. Here, wild-cards or longest-
prefix matching allows an application to register itself for a
base-URI. Requests with URIs containing this base-URI are
also sent to the application. This way, file-server or web-
server applications can be easily created without requiring
the application to implement protocols such as FTP or HTTP.
Upon an incoming request, the serving application calls AC-
CEPT in order to create a new handle. From this handle, the
application can retrieve meta information such as the request
method (GET, PUT, CONNECT), the remote end-point’s URI,
and the requested properties (e.g., content-types understood
by the client application). Currently, the implementation only
supports byte-stream-based end-points, but extensions to allow
datagram-based end-points (with arbitrary application data unit
lengths) are planned.

B. Implementation

The primitives and supporting procedures were imple-
mented in C++ as a library which also provides a C-interface.
The library deals with the NENA IPC protocol to transport
data and meta-information between NENA and applications.
The requirements/properties are currently exchanged as JSON



encoded objects from the application to NENA. A simple
example for a requirement JSON object is

{
"content-type": "image/jpeg",
"reliable": 1

}.

While this introduces an overhead due to text parsing, it
provides extensibility – a main concern for experimentation
environments. This overhead, however, is only introduced
during setup of an end-point. On-going communication over
an existing communication association is not affected.

The C-API allowed us to create an object-oriented API
in Python. The Python API loads the C-library and builds
an object-oriented wrapper around it. Handles are realized as
objects. Thus each of the handle creating methods GET, PUT,
CONNECT, and ACCEPT returns a handle object. The handle
object then offers the methods operating on the handle. These
methods are read, write, wait, and accept.

The Python API was used to create an HTTP-based
API wrapper (WebAPI). We used a multi-threaded
Python web server implementation which is bound to
localhost. In this implementation the HTTP-Get request
is redirected to the WebAPI by using a Browser-Plugin.
This Plugin sends HTTP-Requests to the pre-configured
local WebAPI instance based on the URL scheme name
(for example nenaweb://). The application requirements are
embedded as parameters in the requested URL (for example
nenaweb://kit.videostore/index.html?content-type=text/html).
The WebAPI maps HTTP-Get requests to NENA-GET
requests. In this process, the requested URI and the
requirements are extracted from the URL. The WebAPI then
forwards the data retrieved from the NENA API handle to
the application (a web browser) as HTTP-Reply. Opposed to
implementing a protocol handler directly in an open-source
web-browser, this proved to be more portable and easier to
maintain.

The NENA API is also used as a Management API to ease
management tasks of the NENA node. Management informa-
tion is accessed in a hierarchical management name space
(e. g., nena://<host>/<componentType>/<componentID>). In
its current implementation it is used to retrieved information
about active Netlets, multiplexers, application connections, and
network accesses on a NENA node. The GET request for
“nena://localhost/netadapt/eth0”, for instance, returns

{
"maximumBps": <maximum bandwidth>,
"rxRate": <current RX rate>,
"txRate": <current TX rate>,
"carrier": <carrier detected 1/0>

},

i. e. some statistics on the network access provided by eth0.

C. Usage Recommendations

Once we built this API, it was much easier to develop demo
and test applications, since they didn’t need to implement
the NENA IPC protocol any longer. With the Python API
implementation, it was even easier to create test applications
or demo applications.

One such example is a minimalistic file-server implemen-
tation in Python. The file-server only needs to bind itself
to a base URI, e. g. file://kit.videostore/files, enter its main
loop and wait for new client requests. Upon an incom-
ing request, a new handle is created with ACCEPT. The
request-URI is read from the handle’s meta-information, e. g.
file://kit.videostore/files/videos/movie.webm. From this URI,
the file-server strips the base-URI and reads the requested file
from a pre-configured directory. The benefit here is, that the
file-server does not need to implement an application-layer
protocol, since the GET/PUT semantics are already part of
the API.

Using the name-based approach, content-centric paradigms
can be easily supported. For content retrieval, GET is used.
To publish content, there are two possibilities: With PUT, the
content can be put into the nearest cache (which could simply
be the cache on the local machine) and the application is
not further involved regarding future requests. If the content
should not be put proactively into the network, the application
can choose to BIND on the content’s name. After the initial
retrieval, the application is only involved again if the content
is preempted from any network cache. To improve interactive
communication via a Content-Centric Network (CCN), the ap-
plications may provide requirements indicating which caching
policies should be used. However, we would recommend to use
another network architecture that better caters to the needs of
interactive applications.

An interface paradigm often used to access CCNs is Pub-
lish/Subscribe. In a traditional message-broker architecture,
however, we recommend a different usage of our API com-
pared to CCN: To publish a new message to a topic, PUT
is used. The topic’s name (an URI) may contain a specific
message broker if the architecture requires it. To retrieve
the last message published to a topic, GET should be used.
In order to subscribe to a topic and to retrieve continuous
notifications, a CONNECT to the topic’s name should be used.
Note, that in this case, BIND is not used at all by client
applications. If the message broker, however, is realized at the
application layer, it can announce its presence to the network
using BIND.

Since BIND is network architecture independent, the actions
necessary to actually bind an application connection to an
URI may differ per network. In a traditional TCP/IP network,
it could simply result in opening a well-known port: The
URI http://localhost, for instance, would open TCP port 80.
Within this namespace, however, applications would need to
implement HTTP. We thus recommend introducing another
namespace such as www:// which denotes that the content
should be part of the World-Wide Web. An appropriate Netlet



implementing HTTP will then translate the API primitives
to HTTP primitives and vice-versa. More sophisticated an-
nouncement services may be integrated as well, such as via
DNS service records [14], Bonjour (i. e., mDNS [15] with
service records), or DHTs. The methods best suited for the
respective network architecture can be chosen by the architec-
ture itself.

V. MESSAGE PROCESSING

While the API described in the previous section increases
the abstraction level for the application programmer, the
message processing system described in this section aims at
increasing abstractions for the protocol implementer. Since
networking at its base level is about message, event, and timer
processing, we used a message passing system in NENA.
Hence, each protocol mechanism (or protocol building block,
BB) is realized as message processor and a protocol consists
of a set of message processors which interact using messages
and events.

A. Message Passing

The message passing system in NENA uses message sched-
ulers (MS) and message processors (MP). A MS hereby
manages a set of MPs. MPs are the base class for all
components in NENA, in particular for Netlets and protocol
building blocks. The MS maintains message queues for each
of its MPs. For each message, the MS calls a processing
function of the destination MP. When a MP sends a message
to another MP, the message is put into the message queue of
the destination MP, and execution of the current MP continues
until its processing function returns. Then, the MS calls the
processing function of the next MP. Currently, round-robin
scheduling is used.

At this level, no locking is required, since a MS and all of its
MPs run within the same thread. Multi-threading is supported
by adding additional message schedulers, each running in its
own thread. When messages are exchanged between MPs of
different MSs, a synchronization is required which essentially
means that locks for message queues are necessary.

The number of MSs and the distribution of MPs to MSs
is currently configured statically. This architecture, however,
allows the distribution of MPs across different threads depend-
ing on their run-time behavior and their interaction with other
MPs. This, however, is subject to further investigation.

In addition to directly addressed messages, timer messages
and event messages are distinguished. Timer messages are self-
messages which are delayed by a given time. Event messages
are messages exchanged via the observer pattern: A MP
defines a set of events other MPs can register to. When an
event occurs, the emitting MP notifies all of its listeners.

For this message passing based approach, two additional
implementation concepts have proven indispensable: shared
pointers and scatter-gather buffers. In a message passing
system, messages are created, duplicated, and consumed by
different MPs. Destroying messages manually once they are
consumed bears the potential risk of destroying messages to

Fig. 4. Message passing components and their relations. Messages, events,
and timers exchanged between message processors (MPs) hold references
to flow state objects (FSOs). A message scheduler (MS) manages a set of
message processors and calls their processing functions.

which other MPs still hold references. Similarly, it is easy
to “forget” about destroying a message which is no longer
needed, and thus introducing memory leaks. To avoid these
issues, we use shared pointers which are an implementation
of reference counted pointers in C++/boost. This introduced
only a small overhead while providing convenience for the
programmer and increasing stability.

Scatter-gather buffers are an important concept especially
when using a lot of fine-granular protocol building blocks that
add micro headers. Initially, we experimented with preallo-
cated buffer spaces, writing header fields and moving cursors
around. Despite helper-methods it has proven to be too tedious
to use and to debug. With the introduction of the reboost
message class [16] developed for ariba [17], headers are now
serialized into their own micro buffers and prepended to the
message buffer list. The message buffers can still be iterated
sequentially and byte-wise if needed (for instance, to compute
a CRC). They are linearized only when sent to the network.
Another feature of the reboost message class is a copy-on-
write implementation. If messages are duplicated, only the
message class is copied while the payload buffers are shared
by all instances of the message until they are modified.

B. Flow States

For each application connection, a flow state object (FSO)
is created. Its basic purpose is similar to a TCP Control Block
(TCB) but its scope is extended. It holds basic information
about the flow such as the requested remote URI and the
request method (i. e. CONNECT, GET, PUT, BIND). A FSO
is uniquely identified by a flow ID. Together with the host’s
name, a flow ID identifies an end-point for a communication
association. Unlike port numbers, flow IDs do not represent
well-known services and must be considered random. Service
identification is solely based on the provided URI (see Sec-
tion IV-A).

The FSO uses a slightly modified observer pattern: The
FSO provides events to which message processors can register
to. Notification to registered MPs, however, is not triggered
by the FSO itself, but by other MPs. Examples of such
events are changes of the operational state of the FSO: If



 0

 5

 10

 15

 20

 0  10  20  30  40  50

N
u
m

b
e
r 

o
f 
fl
o
a
ti
n
g
 m

e
s
s
a
g
e
s

Time [ms]

Number of floating messages
Soft−maximum for floating messages

Fig. 5. Number of floating messages with an unreliable datagram transport.
Once the soft-maximum is reached, the counter is decreased and increased in
an alternating way.

the communication ended regularly (or got disrupted), the
operational state is changed from valid to ended (resp. stale).
The MP changing the operational state then notifies all MPs
registered to this event.

Besides basic flow information, the FSO can hold ad-
ditional state objects (SO). SOs are created by MPs and
hold per-flow state information such as sequence numbers.
This allows to create MP objects which by themselves are
stateless. Therefore, it is possible to update MP instances on-
the-fly without disrupting ongoing communication (as long
as the new MP version does not introduce a different SO).
Figure 4 summarizes the relations between message passing
components.

C. Floating Messages

Messages traveling through NENA between applications
and network encounter several buffers and queues. Each
NENA component is a message processor (MP) and has a
message queue for messages directed to it. Those message
queues are not limited in size since this would require proper
handling of exceeded queue limits without dropping messages.
The only way to enforce this, would be to halt execution of
all MPs upwards all message chains leading to the congested
MP. This may lead to deadlocks since message chains are
not required to be loop free (note, that message queues not
only include data packets but also event and timer messages).
To resume message chains, a scheduling strategy would be
required to retain fair behavior.

To keep things simple, NENA uses another approach which
allows unlimited queues per MP. Messages between applica-
tion and network are called floating messages, i. e. messages
within NENA which were not yet sent to the NIC. Messages
not yet acknowledged from the remote NENA instance are
called flying messages. Flow and congestion control mecha-
nisms of network protocols generally limit the flight-size of
messages per flow. Similarly, the float-size can be limited per
application flow on a single NENA instance (independently of
the number of MPs and queues the flow passes through). This
is achieved by incrementing/decrementing counter variables
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Fig. 6. Number of floating messages with a Go-Back-N ARQ (N=128,
delayed cumulative acknowledgments after 100 ms). Due to message buffering
in the retransmission buffer, the soft-maximum may be exceeded temporarily.

of the flow state object each time a message is generated,
duplicated, or consumed. Once a certain maximum is reached,
no more data is taken from the application’s IPC socket which
eventually blocks the application. Thus, rather than having a
traditional buffer for application data, it can be considered
as a virtual buffer distributed across several MPs and their
respective queues and buffers (such as retransmission buffers).

This mechanism interacts with window-based flow and
congestion control mechanisms of network protocols: The
number of floating messages can be limited to their current
window sizes (which also determine the retransmission buffer
sizes). However, the maximum of floating messages can only
be treated as a soft-maximum, which means that it may need
to be exceeded temporarily (to twice the soft-maximum in the
worst case). This is the case when a retransmission buffer is
full (thus, the maximum of floating packets is reached) and
a retransmission is triggered: For each retransmitted packet,
the counter for floating messages will grow by 1 beyond the
currently allowed maximum until it gets consumed by the net-
work device. However, no new messages from the application
are generated. Once the number of floating packets falls below
its current soft-maximum, a flow state event is triggered which
allows NENA to read again from the application’s IPC socket.

Figure 5 shows the value of the floating packet counter
with a simple unreliable datagram transport. In this scenario,
NENA was slowed down to become a processing bottle-neck
in order to visualize when NENA blocks application I/O. Since
no message is duplicated within NENA, the floating message
maximum (which was set to 16) is never exceeded. The ramp-
up time at the beginning of the communication is due to system
I/O buffers filling up (application IPC and network device).

Figure 6 shows the value of the floating packet counter when
using a Go-Back-N ARQ building block with a window-size
of N=128 packets and cumulative acknowledgments which are
delayed by 100 ms. In this case, the allowed soft-maximum of
floating packets is set to Go-Back-N’s window-size which is
128 packets. The number of floating packets, however, still
increases beyond the soft-maximum since additional refer-



ences of packets are stored in Go-Back-N’s retransmission
buffer in addition to sending them further down the stack.
The two peeks in each round are due to thread scheduling
behavior since the processing of the Go-Back-N building block
(and thus the addition of a reference to the retransmission
buffer) and network I/O happen in different threads. Once all
unsent packets are sent to the network the number of floating
packets matches their soft-maximum until an acknowledgment
is received. Then, all acknowledged packets are purged from
the retransmission buffer. Since the number of floating packets
is now below its soft-maximum, the application is unblocked
and new data can be sent. Naturally, this idle time before
an acknowledgement is received should be minimized with
a proper configuration of Go-Back-N or by using mechanisms
with adaptable window sizes. Transport protocols with variable
window-sizes can continuously adapt the soft-maximum of
allowed floating packets according to their window-sizes. If
multiple window-sizes influence the soft-maximum (e. g. from
flow control and congestion control mechanisms), the smallest
value must be used.

If there are no limiting factors such as window-sizes from
network protocols, the soft-maximum should be chosen as
small as possible to reduce end-to-end delay for applications.
The more packets are floating within NENA, the more delay
is added before they are actually sent to the network. On the
other hand, the value must not be chosen too small to avoid
unnecessary processing idle times. If set, for instance, to 1,
it would behave like a Stop & Wait flow control mechanism
within NENA with its accompanying inefficiency.

A drawback of the counter approach is, however, that each
MP is required to increment/decrement the counter variables
if it creates additional messages or consumes messages. For
complex mechanisms, this might yield to implementation bugs
where the counter does not match the number of messages
and thus stalls the communication (if it is increased too often)
or allows more and more messages within NENA (if it is
decreased too often). To deal with this issue, we are currently
investigating to what extent the reference count of the shared
pointer concept can be exploited to increase/decrease those
counters automatically. The use of message class pools (which
hold references to messages for later reuse) currently disallows
this approach.

VI. A SIMPLE NETWORK ARCHITECTURE

In this section, we will give an overview of our “Simple Ar-
chitecture” which we used to experiment with our framework.
While it is not sophisticated, it should serve as an example of
the necessary decisions that need to be made when designing
a new architecture within the NENA framework.

A. URI Scheme

Each architecture and Netlet has to define the URI schemes
it supports. These can either be proprietary schemes coming
with the architecture or global schemes registered at a global
authority such as IANA. Format and semantics for those
schemes need to be standardized in this case.

For our Simple Architecture, we defined two proprietary
schemes, node:// and app://. Node-URIs identify hosts, app-
URIs identify application services. Since name-to-address
resolution in Simple Architecture (see next section) requires
node-URIs, app-URIs are mapped to node-URIs. To make this
mapping canonical, the app-URI has the following format:
app://<hostname>/<servicename>/<serviceparameters>. Such
URIs are then mapped to node://<hostname>.

B. Addressing, Neighbor Discovery, Forwarding

One requirement for the Simple Architecture was that it
runs over UDP tunnels, since this is the easiest way to set
up communication in demos and on PlanetLab-based test-
beds. Hence, we chose UDP end-point addresses as interface
addresses for network accesses, i. e. <IP address>:<port>.
However, there is no differentiation made between IP address
and port number, thus the complete tuple serves as a locator.
Additional network accesses can then be created easily via
additional UDP end-points, and multiple NENA instances can
run on the same node. The latter is a feature which can be used
to set up scenarios similar to [18], where a whole network can
be emulated on a single node with realistic operating system
behavior.

The multiplexer builds a base layer for this architecture. On
an end-system, it performs name-to-address translation, which
means that late binding of names to addresses is realized here:
transport protocols are not aware of any network addresses and
only work with URIs supplied by the application. In fact, in
most cases, protocol mechanisms do not even need the URI
since flow multiplexing is already done by the framework by
providing a flow state object with each message. After name-
to-address translation, the multiplexer needs to determine an
appropriate network access over which a message needs to
be sent. For this, it possesses a forwarding information base
(FIB) containing next-hop addresses for known addresses.
On intermediate-nodes, the multiplexer uses this FIB for
forwarding messages.

The FIB is populated by a “Routing” Netlet which performs
simple neighbor discovery and neighbor information exchange.
There is no routing algorithm or path metric implemented, nor
are routes tested if they are still valid. Neighbor discovery is
done via broadcast messages sent over each network access.
Broadcasts can either be done as UDP broadcasts (which
has the disadvantage that they may not be allowed in certain
networks) or via a configurable list of UDP end-points where
the “broadcast” message should be sent.

C. Service, Flow, and Netlet Identification

Service and Netlet IDs need to be sent over the network
in order to allow the remote multiplexer to determine the
correct Netlet and Service. Since service URIs and Netlet
IDs (also represented as URIs) are relatively long strings,
only a hash is sent to the remote node. Upon receiving a
message, the hashes are compared to the hashed strings of
known services and Netlets and appropriately forwarded to
the respective components.



In each message, the local flow ID and the remote flow ID
(as far as it is known) is sent. Together with the nodes’ names,
the quadruple (<node1>, <flow1>, <node2>, <flow2>) uniquely
identifies an application flow. Note, that at this point the nodes’
names are used and not their addresses. This allows flows to
survive in case of changing network access addresses.

Once the flow IDs of both nodes are known, flow state
objects on the respective nodes can be determined without
comparison of service or Netlet hashes.

D. Transport Netlets

We have built two simple transport Netlets: a reliable and
an unreliable one. Both are composed of protocol building
blocks that are architecture independent. While the unreliable
Netlet only consists of a segmentation building block, the
reliable transport adds a Go-Back-N ARQ building block and
a building block to signal REST commands. Thus, the reliable
transport Netlet is the only one supporting the full feature set
of the API, while the unreliable one only supports CONNECT
and PUT in a basic way without sending service parameters
to the remote node. GET requests and service parameters
require a reliable transmission and, thus, the REST building
block was not integrated into the unreliable transport Netlet.
During the Netlet selection process in NENA, this and any
additional application requirements (e. g. requested reliability)
are checked. If both Netlets are able to serve a given request,
precedence is given to the unreliable Netlet.

VII. CONCLUSION

The implementation concepts described in this paper par-
tially use software-engineering patterns which are only offered
by high-level programming languages such as C++ (with STL
and boost libraries) and Java. In OS kernel environments,
such languages are not always available, which is why our
framework is running completely in user space. While this
may not be suitable for high-performance network devices
such as switches and routers (which anyway rely on hardware
implementations), end-systems and middle-boxes may benefit
from user space approaches. In fact, some kernel drivers find
themselves today in user space in all major operating systems.
User space approaches with high-level language support yield
faster development cycles, more frequent updates, and a huge
diversity – provided that the right abstractions were made to
increase acceptance and ease-of-use. With NENA, we gained
implementation experience with such abstractions. Over the
years, the framework grew and was used for experimentation,
demonstrations, student theses, and student lab assignments.
While interfaces now allow much faster additions of applica-
tions and protocol building blocks than at the beginning, there
still are a few inconveniences left – which mostly is because
of the prototype character, though.

The huge palette of HTTP/Web-based applications today
suggests that the current socket interface is not the best
abstraction for application programmers. With the API im-
plementation presented in this paper, we showed that the key
properties of what HTTP provides (i. e. name-based GET/PUT

semantics) can be moved down below the API without limiting
the application to the HTTP/TCP/IP trio. This still allows the
continuation of innovations at the application-level while, in
addition, enables innovation in the network. With a message
and event-based decoupling of protocol mechanisms, the latter
becomes even easier to realize since mechanisms evolved
over decades can be used for different protocols via protocol
composition approaches.
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