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Institute of Telematics, Karlsruhe Institute of Technology (KIT), Germany

{baumgart,huebsch,mayer,}@kit.edu, gamer@tm.uka.de

Abstract—Overlay networks have become an enabler for
innovation in today’s Internet through cost-efficient and flex-
ible deployment of novel services. The self-organization and
scalability properties that peer-to-peer-based overlay networks
provide have created real-world large-scale systems like Kad, or
Amazon’s Dynamo. Due to their distributed behavior, developing
and evaluating large-scale overlay networks has a much higher
complexity in contrast to centralized systems. To cope with this
complexity, simulation has proven indispensable for design and
evaluation of overlay networks. Building upon the OMNeT++
simulation environment, the OverSim framework provides widely
used simulation of a large and growing set of overlay networks.
Realistic environments for evaluation of such networks are crucial
to obtain meaningful results, yet complex to develop and validate.
The ReaSE topology and traffic generator allows to create
Internet-like network topologies, background traffic, and attack
traffic. In this work we integrate ReaSE with OverSim, therewith
allowing for evaluation of overlay protocols upon realistic under-
lays and realistic background traffic. This integration provides
an important step for design and evaluation of overlay-based
systems and allows for meaningful results. We provide insights
into runtime and memory consumptions of overlay simulations
on the new ReaSE-based underlay on the one hand, and show
effects on overlay protocols caused by the realistic underlay on
the other hand.

I. INTRODUCTION

Overlay Networks have become an enabler for developing

and deploying novel services in today’s Internet through the

unintrusive and cost-efficient concept of virtual networks.

In contrast to services deployed inside the network, overlay

networks do not require changes inside the network infras-

tructure, nor deployment of costly equipment. Rather, overlay

networks are deployed on client end-systems—called peers—

that provide resources for the overlay network, therewith also

called peer-to-peer (P2P) network. When designed carefully,

overlay networks exhibit beneficial properties like scalabil-

ity, or self-organization which further ease maintenance and

deployment. However, there are only few real-world overlay

networks deployed in large scale like Kad [1], and Amazon’s

Dynamo [2]. Further efforts to bring P2P-based overlay net-

works into reality are Adobe’s Flash P2P technology Stra-

tus [3] or Wikipedia’s effort to handle the large volume of

video data through the BitTorrent-driven and browser-based

Swarmplayer [4].

To foster real-world deployments of overlay networks, ex-

haustive evaluation is crucial to understand their distributed be-

havior in terms of scalability, self-organization, controllability,

load, and behavior under failure or attack. Evaluating behavior

of overlay protocols in real-world deployments has immense

administrative overhead and huge cost and is therefore not

economical. Simulation has therefore become the de facto

approach for overlay protocol design and evaluation. Here,

the Overlay Simulation Framework (OverSim) [5] provides a

strong foundation for the design, evaluation, and comparison

of P2P overlay networks through a large number of building

blocks and existing protocols (cf. Section II).

To achieve meaningful results, realistic models are required

for simulation. OverSim e. g. provides realistic churn models

based upon stochastic observations of real-world systems [6].

Underlay latencies are modeled in OverSim based upon data

from the CAIDA Skitter project [7][8] which have been

gathered through real-world measurements. This so called

SimpleUnderlay provides great simulation performance due

to abstraction from the underlying network topology and

paths. However, this underlay model does not obey underlay

effects like cross-traffic, influence of AS-level and router-level

topology, or router queuing effects that result in jitter.

The project Realistic Simulation Environments (ReaSE) [9]

provides a simulation model that allows for the generation

of underlay topologies and background traffic, based upon

characteristics that also have been analyzed through real-

world Internet observations [10], [11], [12], [13]. These

characteristics are, for instance, a powerlaw-distribution in a

topology’s node degrees or background traffic showing self-

similarity. ReaSE has been developed as a simulation model

for OMNeT++ and is based on the protocols implemented

by the INET framework. ReaSE provides standalone topology

generation through GUI-based tools as well as traffic gener-

ation during simulations based on different traffic types and

network services.

In this paper we perform an integration of OverSim and

ReaSE to allow for meaningful evaluation of overlay networks

on realistic underlays. We see this integration of OverSim and

ReaSE as an important step towards:

1) Support the community in the design and evaluation of

overlay protocols and distributed systems.

2) Increase acceptance of overlay networks in real-world

applications through a better understanding of the effects

and behavior overlay networks expose in real-world de-

ployments.

This paper is structured as follows: we given an introduction

to OverSim and ReaSE in Sections II and III, respectively.

The design decisions and actual integration of OverSim and

ReaSE are explained in detail in Section IV. Evaluation results

with respect to simulation performance and overlay behavior

are presented in Section V and compared to results obtained

through existing underlays. Guidelines for selection of an
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Fig. 1. OverSim’s modular architecture

underlay are given in Section VI. We compare our approach in

Section VII against related work. Conclusion and future work

are given in Section VIII.

II. OVERSIM

A fundamental problem in studying peer-to-peer networks

is the in-depth protocol evaluation, commonly involving both

simulation in a large-scale network as well as testing in real

networks (e. g. PlanetLab). The OverSim [5] simulation frame-

work facilitates these tasks flexibly, being designed to fulfill

a number of requirements partially neglected by existing sim-

ulation approaches. OverSim comprehensively includes many

(un-)structured peer-to-peer protocols, several event distribu-

tion protocols and applications based on these protocols. All

protocol implementations can be used for both simulation as

well as real world networks. Additionally, OverSim provides

several common functions for structured peer-to-peer networks

to facilitate the implementation of additional protocols and to

make them more comparable.

OverSim’s architecture shown in Figure 1 allows the mod-

ularized modeling of all components in a P2P network in

easily exchangeable or extensible manner, thus facilitating

code reuse. Several exchangeable underlay network models

allow to simulate complex heterogeneous underlay networks

as well as simplified networks for large-scale simulations (up

to 100 000 nodes have been simulated successfully).

A. Underlay Abstraction

The framework provides different underlay abstraction mod-

els differing in complexity and accuracy, being the Simple-

Underlay, support of the INET Framework as well as the

SingleHostUnderlay.

The SimpleUnderlay is the default underlay model for

OverSim. It combines a low computational overhead with high

accuracy, making it a good model for simulating large overlay

networks. Nodes are placed into a n-dimensional Euclidean

space, determining mutual delays based on their euclidean

distance (with n=2 or n=3 depending on the data set). Nodes’

positions are chosen to match the measurements from the

CAIDA/Skitter project. Additionally, each node is assigned to

a logical access network characterized by bandwidth, access

delay, jitter and packet loss parameters to allow the simulation

of heterogeneous access networks. Mobility can be achieved

by changing coordinates, access network characteristics and

the IP address of a node. To model bandwidth effects, each

node contains a logical sending queue. The SimpleUnderlay

allows for simulation of underlay network partitioning and

merging.

For simulation of heterogeneous access networks, back-

bone routers and terminal mobility, OverSim provides an

underlay model based on the INET framework. Here, the IP

stack is completely modeled and even routers can be part

of the simulated overlay. INET also contains several MAC

protocol implementations, which e. g. allow to model wireless

IEEE 802.11 interfaces.

The SingleHostUnderlay provides real network support for

OverSim. It acts as a middleware to support deploying overlay

protocols developed for OverSim on real networks.

Since all underlay abstraction models share a consistent

UDP/IP interface to the overlay protocols, using a different

model is fully transparent to the overlay layer.

B. Protocols, Applications & User Models

To facilitate the implementation of overlay protocols in

OverSim, several common overlay protocol functions have

been identified and integrated into the simulation framework.

Examples are overlay message handling (e. g. RPCs), a generic

lookup with support for different routing modes, node failure

discovery and routing table recovery. Furthermore, the frame-

work offers Common API [14] support, bootstrapping support,

and proximity awareness (e. g. Vivaldi, GNP).

All of these features allow for rapid overlay protocol pro-

totyping and make protocol implementations comparable and

less error-prone.

For overlay applications either a layered or a component-

based architecture is feasible (see Figure 1). Applications can

use the Common API interface, Application Layer Multicast

interface, or Virtual World interface provided by the overlay.

Additionally, OverSim makes use of an XML-RPC interface

to provide overlay services (e. g. distributed data storage) to

external applications similar to the interface provided by the

OpenDHT service. User behavior can be scripted by using the

trace manager which parses scenario or trace files containing

application events.

C. Churn Modeling

OverSim provides several models for generating churn,

including a lifetime-based churn model supporting different

distribution functions (e. g. Weibull, Pareto or Exponential).

Alternatively, a scenario or trace file containing join and leave



events can be used to model churn behavior. It is possible

to use more than one churn generator at the same time

to simulate groups of nodes with different churn behaviors.

For each churn generator, different node configurations and

overlay parameters can be specified, allowing easy generation

of complex scenarios with heterogeneous node behavior.

D. Real Network Support

All protocol implementations can be employed without code

modifications in real networks. This can be accomplished in

two different ways: With the SingleHostUnderlay introduced

in Section II-A an OverSim instance emulates a single overlay

host, which can be connected to other protocol instances over

a real network like the Internet. With the INETUnderlay, in

contrast, OverSim can simulate an arbitrary number of overlay

hosts. For real network support, OverSim’s simulation time

can be synchronized with the real time. Using the Linux TUN

interface, the hosts in the INETUnderlay can communicate

with an external network. This can be used to demonstrate

overlay protocols and applications with a limited number of

physical devices by connecting them to a large number of

emulated overlay nodes.

III. REASE

ReaSE, which has been first introduced in [9], features

easy and repeatable creation of simulation scenarios with

characteristics close to reality in multiple aspects. This, on

the one hand, facilitates a meaningful evaluation of Internet-

like systems and protocols. On the other hand, this ensures

that results of different research activities are comparable due

to the usage of equal simulation premises. In the following,

the basic characteristics and design decisions of ReaSE are

shortly summarized.

With the objective of allowing for a meaningful simulative

evaluation of Internet-like systems and protocols we identi-

fied three important basic aspects that must be modeled as

realistically as possible:

• Internet-like topologies,

• Self-similar background traffic, and

• Large-scale attacks.

Creation of Internet-like topologies is divided into two hi-

erarchical levels, as indicated in Figure 2: First, a topology

of Autonomous Systems (AS) is generated. In a second step,

each AS gets a separate router-level topology. The router-level

topology, in turn, is structured hierarchically: it consists of

core, gateway, and edge routers as well as actual host systems.

The routing process itself is divided into these two levels,

as well. This means, that communication between different

AS is only handled by core routers taking part in the inter-

domain routing. Every router-level node, on the other hand,

takes part in the intra-domain routing of its specific AS. Thus,

gateway and edge routers are not aware of routers outside their

own AS. Routing within ReaSE currently is done by statically

determining all routers’ routing tables at simulation startup.

As stated by various publications in recent years, e. g. [15],

[10], [11], today’s topologies—on AS-level as well as on
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routers
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routers
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systems

Fig. 2. Hierarchical topologies created by ReaSE

router-level—show, amongst other characteristics, a powerlaw

distribution in node degree. Therefore, the topologies gen-

erated by ReaSE also show this characteristic, on AS-level

as well as on router-level. In case of the router-level addi-

tional aspects like market demands, link costs, and hardware

constraints have to be considered [11]. Therefore, router-level

topologies are modeled as hierarchical topologies as shown in

Figure 2 whose link bandwidth increases gradually towards

core routers due to traffic aggregation and increasing cost

of high-bandwidth routers. The fact that ReaSE-generated

hierarchical topologies actually reproduce the mentioned re-

alistic characteristics well has been validated in numerous

simulation runs by calculating the three powerlaw values

defined by Faloutsos et al. [15] for generated topologies of

various different sizes and comparing these values to reference

values of real networks. Further details on this validation can

be found in [16].

For achieving realistic simulations not only traffic for the

specific evaluated protocol or system has to be generated

and examined. Indeed, it is necessary to create additional

background traffic showing the same characteristics as normal

traffic in real networks like the Internet—as such traffic usually

has a heavy influence on the observed protocol or system.

Replay of traffic traces is infeasible in large-scale simula-

tions [17] due to the necessity to record traces at multiple

different spots in the Internet, and due to time dependencies

and context between the traces. Thus, ReaSE provides means

for generation of background traffic within the simulation.

Therefore, ReaSE extends the INET framework, which

provides basic protocol functionality of the TCP/IP stack for

OMNeT++, with special client and server entities for traffic

generation. Generation thereby includes various traffic types

such as web, streaming, mail, and ping traffic. The generation

of background traffic relies on traffic profiles that define the

basic behavior of those different traffic types. A traffic profile

hereby specifies representative parameters of the correspond-

ing service—like waiting times between consecutive request

and reply packets, packet lengths, and number of requests and

replies per flow. During a simulation, these specified values

serve as configuration for independent random variables based

on pareto and normal distributions, respectively. Again, it has

been extensively validated by simulation that the resulting

traffic generated by the client and server entities features

complex characteristics such as self-similarity—as traffic in



the Internet does [12]. Furthermore, different publications

observed that protocol shares in the Internet remained stable

over the last ten years despite various innovations like voice-

over-ip or video-on-demand [13]. These protocol shares—

about 80 % of the communication relies on the transport

protocol TCP, about 20 % on UDP and only about 1 % of the

packets observed in the Internet are ICMP error messages—

are reproduced realistically by ReaSE-generated traffic, too.

Bearing in mind security-related topics, a further aspect

is considered by ReaSE: the generation of attack traffic

showing characteristics close to reality. ReaSE therefore pro-

vides means to generate, for example, Distributed Denial-

of-Service attacks based on the mechanisms of Tribe Flood

Network [18]—a notorious DDoS tool used in the wild.

IV. INTEGRATION

For integrating OverSim with ReaSE we developed a new

underlay model in OverSim that allows to load topologies

generated with ReaSE and enables to run background traf-

fic generation. This approach allows to easily generate new

topologies and traffic models with ReaSE and requires no

adaptations on the side of OverSim. We took special care in

a loose coupling of OverSim and ReaSE so that they can be

developed independently and are not mutually required, rather

OverSim integrates ReaSE as an optional component. This is

important as ReaSE employed new modules for implementing

the topology, routing, and traffic generation. From the architec-

tural perspective the new underlay for ReaSE-based topologies

is similar to OverSim’s InetUnderlay.

An implementation view of the new ReaSEUnderlay

model is given in Table I. The ReaSEUnderlay main

module does not (in contrast to e. g. the InetUnderlay)

include routers and channel definitions, but rather

the TerminalConnector (being defined in the

ConnectReaSE module described below). Its main purpose

is bundling together all required underlay components

in a single network module. ReaSEInfo extends the

class PeerInfo and is used mainly by churn generators.

It assists in mapping the correct underlay structure to

a given node in OverSim’s GlobalNodeList. The

ReaSEUnderlayConfigurator also serves churn

generators as an interface to add or delete nodes in

the network. Here, especially in case of AS topologies,

nodes also have to be added to the corresponding

submodule. ConnectReaSE defines the functions of the

TerminalConnector which is being used to create overlay

nodes in the correct submodule and afterward connect them

to an edge router. Therefore, the TerminalConnector

has to determine an appropriate edge router and create

routing table entries considering the added overlay node.

Similarly, a node and its routing entries may be deleted. The

ReaSEOverlayHost module directly describes an overlay

participant, while RUNetworkConfigurator configures

the nodes right before the actual simulation starts. Finally,

ReaSE-generated topologies are provided in a specific folder.

Initializing the TerminalConnector consists of two

steps, the first being determining the module’s parameters

and setting the corresponding variables, while the second

is transferring the topology to appropriate structures. Doing

the latter has to consider connecting overlay nodes to edge

routers in Stub Autonomous Systems (SAS) exclusively. In

case the topology has no AS, the routers are considered as

one single AS. Also, router modules have to be classified as

core routers, gateway routers or edge routers, before shortest

paths are calculated to all edge routers employing Dijkstra’s

algorithm. For adding a new node, a random edge router in

the topology is chosen, considering possible constraints (like

a maximum number of possible connections or IP address

range limitations). After edge router determination, an overlay

node is created in the corresponding AS, links are created

and routing table entries are added. Deleting an overlay node

requires two steps: First, the specific node is deleted from the

GlobalNodeList and the churn generator. Then, it has to

be determined if the node leaves the topology gracefully or

not. Finally, the node gets disconnected from its edge router

and is removed. Figure 3 shows a screenshot of a running

OverSim simulation based on a ReaSE-generated underlay.

Multiple transit and stub AS can be seen, being interconnected

and abstracted in the view. An internal view of one such single

AS—consisting of terminals and router—is shown in Figure 4.

Each of the terminals here really takes part in the overlay

structure.

The ReaSEUnderlay provides some data structures and

mechanisms to increase efficiency in use. To avoid routing

entries being created from scratch for every new node added,

routing information is being held in an edgeRoutes struc-

ture for all nodes connected to the same edge router. This

allows efficient reuse if applicable. Also, since ReaSE divides

the network topology into different AS, every system in an

AS and every overly node connected to it obtains an IP

Address of the AS’s own IP range. Consecutive IP addresses

may not be used here since possible node fluctuations would

lead to address range consumption. Thus, the ReaSEUnderlay

provides the stubSystem structure that helps keeping track

of addresses currently in use or freely available.

V. EVALUATION

For evaluating the ReaSE-based underlay we are interested

in two categories: First, performance and memory require-

ments for the new ReaSE-based underlay which we present

in Section V-A. Second, the behavior of overlay protocols

when running on the ReaSE-based underlay in comparison

to the other OverSim underlays and in comparison to real-

world measurements, which we present in Section V-B. Fur-

thermore, we used an adapted version of the GT-ITM [19]

topology generator for OverSim based on [20] for generating

a comparison underlay. General simulation settings are shown

in Table II. The following plots show the average values and

98% confidence intervals of 10 simulation runs with different

seeds.



TABLE I
OVERVIEW OF REASEUNDERLAY IMPLEMENTATION

Name Files Functionality

ReaSEUnderlay *.ned Main underlay module that integrates the ReaSEUnderlayConfigurator,
ChurnGenerator, ConnectReaSE, and RUNetworkConfigurator.

ReaSEInfo *.cc, *.h ReaSE-specific information attached to an overlay node.
ReaSEUnderlayConfigurator *.cc, *.h, *.ned Configurator module for the ReaSEUnderlay.
ConnectReaSE *.cc, *.h, *.ned Connects overlay terminals to the ReaSE edge routers.
ReaSEOverlayHost *.ned Decription of a host that participates in the overlay.
RUNetworkConfigurator *.cc, *.h, *.ned Configures the nodes belonging to the topology before starting actual simulation.
topologies/ folder, *.ned Contains ReaSE generated topologies in ned-files.

Fig. 3. OverSim with ReaSEUnderlay showing the whole network

Fig. 4. OverSim with ReaSEUnderlay showing a single AS

A. Simulation performance

For evaluating large-scale overlay networks the simulation

duration is of interest as it is the limiting factor for overlay

size and number of seeds that can be generated with a given

scenario. We choose the well-known Chord [21] protocol for

our comparisons. In one setup we run Chord alone with

500 overlay nodes, and with 1 000 overlay nodes. Then,

TABLE II
SIMULATION SETTINGS

Group Parameter Value

Environment

CPU Dual Core 2.8 GHz
RAM 1 GB
OS Ubuntu 9.10
OMNeT++ Version 4.1
OverSim Version 20101113
ReaSE Version 1.23

General
Number of nodes 500 and 1000
Simulation time 3 hours

Chord

Routing mode Iterative
Successor list 8
Stabilize interval 20 s
Fixfinger interval 120 s

sVivaldi
Dimensions 2
Height vector no

ReaSEUnderlay

server2edge link 5 ms, 100 Mbps
host2edge link 5 ms, 2 Mbps
edge2host link 5 ms, 16 Mbps
edge2gateway link 1 ms, 100 Mbps
gateway2core link 1 ms, 1000 Mbps
core2core link 1 ms, 1000 Mbps
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we additionally employ the sVivaldi [22] Internet coordinate

system with Chord. Figure 5 shows an overview of simulation

duration for the different scenarios for three different un-

derlays SimpleUnderlay, ReaSEUnderlay, and GT-ITM-based

underlay. The SimpleUnderlay generally provides the best

performance and fastest simulations as it does not employ

complex routing or intermediate systems. The GT-ITM-based



underlay and ReaSEUnderlay have a comparable simulation

duration which is several orders of magnitude higher than the

SimpleUnderlay. An interesting effect is the SimpleUnderlay’s

performance decrease and resulting simulation time increase

when employing sVivaldi. While the SimpleUnderlay’s simu-

lation time more than doubles, GT-ITM and ReaSEUnderlay

have a much smaller relative increase in simulation time.

This is due to the fact that protocols such as sVivaldi pose

a constant overhead that is independent of the underlay. In the

case of sVivaldi and Chord, the constant overhead of sVivaldi

outweighs the more underlay-specific overhead of Chord.
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Besides simulation runtime, the memory requirements of

the simulation pose a limiting factor in size of the overlay

simulation due to hardware constraints. We again use the same

set of scenarios as in the prior runtime evaluation. Figure 6

shows the memory requirements for the three underlays Sim-

pleUnderlay, ReaSEUnderlay, and GT-ITM-based underlay.

Generally, the SimpleUnderlay provides the smallest memory

requirements, ReaSEUnderlay the second smallest memory,

and GT-ITM-based underlay the largest memory requirements.

The differences are, however, not so extreme so that we argue

that in terms of memory the realistic properties gained with

the ReaSEUnderlay outweigh the higher requirement in terms

of memory.

B. Overlay behavior

To evaluate how overlay protocols behave differently de-

pending on the employed underlay, we use the sVivaldi

latency estimation mechanisms. We are especially interested in

whether distributed protocols exhibit a behavior similar to real-

world deployments. The sVivaldi latency estimation system

provides a good way to evaluate the behavior, especially as

there exist real-world measurements of the Vivaldi system

on the PlanetLab testbed [23]. Figure 7 shows the relative

error of the sVivaldi simulation on the three underlays, and

results from Vivaldi real-world measurements from [23]. The

SimpleUnderlay results in an unrealistic behavior as laten-

cies are modeled through an ideal 2D coordinate system.
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ReaSEUnderlay provides the best estimation error in terms of

similarity to the real-world estimation error reported in [23]

from PlanetLab.
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Besides generating real-world topologies, ReaSE allows

generation of self-similar background traffic at simulation

runtime. We use this traffic generation feature to evaluate

the effect of overlay Key-based Routing (KBR) latencies with

different traffic profiles. Figure 8 shows Chord running on the

ReaSEUnderlay with different intensities of ReaSE-generated

background traffic. It can be seen that such background

traffic results in non-negligible impact on the overlay routing

behavior. This is due to router queue effects that result in

network congestion in the routers. Therewith the ReaSEUnder-

lay can be used to evaluate overlay protocols with additional

background traffic to get an insight into the overlay protocol

stability and resilience. While we just present initial results to

show that the new ReaSE-based underlay allows to evaluate

overlay protocols under the influence of background traffic,

an in-depth evaluation of overlay protocol behavior is future



work.

VI. CHOOSING AN UNDERLAY

Based on our evaluations and experience with the different

underlays in OverSim we give guidelines on selecting the

correct underlay based on requirements for the simulation.
a) SimpleUnderlay: The SimpleUnderlay provides the

best performance in terms of memory consumption and sim-

ulation run-time. It is therefore best suited if a very large

simulation is aimed for. Using the SimpleUnderlay OverSim

allows to run simulations with 10 000 nodes on commodity

hardware in real-time. Large-scale scenarios of 100 000 nodes

have been successfully simulated on specialized hardware.

Typical Internet latencies based on CAIDA/Skitter[7][8] data

allow good approximation of real-world behavior in simple

settings.
b) InetUnderlay: The InetUnderlay aims at use of cus-

tom topologies that can be built with heterogeneous protocols,

e. g. for support of wireless access. Such underlays are on

the one hand built through a simplified topology algorithm

inside OverSim and can be easily adapted to run overlays over

custom topologies and networks.
c) ReaSEUnderlay: The ReaSEUnderlay presented in

this paper allows to run overlay networks on realistic topolo-

gies that can be easily generated through ReaSE tools and

expose topological properties found in today’s networks. As

such they pose more complex scenarios but exhibit latencies

and jitter that result from router queuing effects like found

in the real world. Specifically we found that Internet co-

ordinate systems like sVivaldi pose performance similar to

PlanetLab measurement when run on the ReaSEUnderlay. The

ReaSEUnderlay allows for scaling of the underlay and overlay

separately, and has different link latencies on different links in

the topology. It therefore can be used to perform P2P traffic

engineering, and focus on link stress, e. g. in Application Layer

Multicast (ALM) protocols.

VII. RELATED WORK

Different topology and traffic generators exist that could

be integrated with the OverSim simulation environment. We

briefly review the topic of topology and traffic generation and

argue for our decision to integrate ReaSE with OverSim.
d) Topology Generation: Early topology generators like

the Waxman model [24] are based on random graphs that

do not take real-world properties of Internet topologies into

account. More advanced generators like GT-ITM [19]—which

is used for comparison in our evaluations—or TIERS [25]

perform a first step in taking structural properties of Internet

topologies into account. Based on the findings of Faloutsos

et al. [15] that Internet topologies exhibit a power-law distri-

bution, newer generators like Inet-3.0 [26], or BA [27] have

been developed. They, however, can only generate AS-level

topologies and do not take special properties of the router-

level topology into account. Another well-known topology

generator is BRITE [28] that provides a large set of topology

generation functionality. BRITE, however, lacks traffic gener-

ation and is no longer developed.

e) Traffic Generation: An important property of Internet

traffic is its self-similarity [12]. Traffic generators that focus on

simulation environments and produce suitable traffic mixes are

e. g. BonnTraffic [29] and TrafGen [30]. Existing traffic gen-

erators, however, require exhaustive configurations for all end-

systems taking part in the traffic generation. This makes them

unsuitable for creation of large-scale topologies. Furthermore,

they mostly focus on a single application that generates traffic,

we however require a realistic mix of Internet background

traffic.

Our choice for selecting ReaSE to be integrated with

OverSim is threefold:

• First, ReaSE is cleanly integrated with the OMNeT++

environment.

• Second, ReaSE is based on state-of-the-art algorithms for

topology and traffic generation.

• Third, ReaSE integrates multiple functionality that other-

wise would require integration of multiple tools (topology

generation, background traffic generation, attack traffic

generation).

VIII. CONCLUSION

Overlays present an important technology for implementing

and testing of novel services and application in the Internet.

To ease evaluation of distributed overlay protocols, simula-

tion has proven to be of major importance. For providing

realistic simulation environments, in this paper we integrated

the ReaSE topology and traffic generator with the well-

established OverSim overlay simulation framework. While

simulation time is a critical factor where the new underlay

shows strong negative impact, memory requirements that

pose actual hardware constraints increase only slightly with

our newly developed ReaSE-based underlay. We have shown

that distributed systems like sVivaldi expose more realistic

behavior on the new underlay. Further, background traffic is

an important characteristic of real-world networks that has

been neglected in simulations. The integration of ReaSE with

OverSim finally provides means on the way towards realistic

overlay simulations. We provide the new ReaSEUnderlay in

the latest OverSim release for the research community as open

source.

There are open issues, especially in dimensioning of the

underlay network, and in modeling of link latencies on the

different topology hierarchies that we aim to tackle in future

work. Furthermore, the evaluation of overlay protocols in

face of background traffic is an important topic that must be

analyzed in more detail.

ReaSE: http://www.tm.kit.edu/rease

OverSim: http://www.oversim.org
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