TELEMATICS TECHNICAL REPORTS

Analysis and Design of Mobility Support for QoS NSLP

Max Laier mlaier@freebsd.org

February, 24th 2009

TM-2009-1

ISSN 1613-849X

http://doc.tm.uka.de/tr/

Institute of Telematics, University of Karlsruhe TELEMATICS Zirkel 2, D-76128 Karlsruhe, Germany

Analysis and Design of Mobility Support for QoS NSLP

Studienarbeit am Institut für Telematik Prof. Dr. M. Zitterbart Fakultät für Informatik Universität Karlsruhe (TH)

von

cand. inform. Max Laier

Betreuer: Prof. Dr. M. Zitterbart Dr. R. Bless Dipl.-Inform. M. Röhricht

Tag der Anmeldung:1. Juli 2008Tag der Abgabe:9. Dezember 2008

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 9. Dezember 2008

Contents

1	Intr	Introduction 1						
	1.1	Objectives of this Thesis						
	1.2	Structure of this document						
2	Bac	kground and Related Work 3						
	2.1	Mobility with MobileIPv6						
		2.1.1 Logical and Actual Network Flows						
		2.1.2 MIP6 signaling and Datastructures						
	2.2	The NSIS architecture						
		2.2.1 Quality-of-Service Signaling in NSIS						
	2.3	Related Work						
		2.3.1 From the NSIS Working Group 10						
		2.3.2 Other approaches to QoS-signaling for mobility						
		2.3.3 Implementation Environment						
3	Ana	alysis 13						
	3.1	QoS-signaling in Different Mobility States						
		3.1.1 At Home						
		3.1.2 Tunnel Mode						
		3.1.3 Route-Optimization						
	3.2	A Detailed Look at Signaling Operations						
		3.2.1 Tunnel Mode Operation						
	3.3	Mobility unaware NSLP Implementations						
	3.4	Message Routing State from/to the MN						
	3.5	Overhead due to MobileIPv6						
	3.6	Requirements						
	3.7	Summary 24						
4	Des	ign and Implementation 25						
_	4.1	Flow Info Service						
		4.1.1 Flow Info Service – Provider						
		4.1.2 Flow Info Service – Consumer						
	4.2	Quality-of-Service NSLP changes						
	4.3	Source Address Selection						
	1.0	4.3.1 The Home Agent to Mobile Node GIST-Query Issue						
5	Eva	luation 35						
-	5.1	The Testing Environment						
	5.2	Functional Evaluation						

	5.3	5.2.1 5.2.2 5.2.3 Signali	MN Sender, Sender-Initiated Reservation	
	5.4		ary	45
6	Sun	nmary	and further directions	47
\mathbf{A}			n Packet Dumps	49
	A.1		ender in Sender-Initiated Mode	49
		A.1.1	Initial Reservation	49
		A.1.2	Hop-to-Hop Refreshes	50
		A.1.3	Handover to AR3 - Tunnel Mode	50
			Handover to AR3 - Route-optimized	53
		A.1.5	At AR3: Hop-to-Hop Refreshes	54 56
		A.1.6 A.1.7	Handover to AR1	56 57
		A.1.7 A.1.8	At AR1: Hop-to-Hop Refreshes for old and new path At AR1: Old Path Teardown	$57 \\ 58$
		A.1.8 A.1.9	At AR1: On Fain Teardown	58
			Handover to AR3	59
			At AR3: Hop-to-Hop Refreshes	61
			Handover Back Home	62
			At Home: Hop-to-Hop Refreshes for old and new path	63
			At Home: Old Path Teardown	64
			At Home: Hop-To-Hop Refreshes	65
	A.2		nder in Sender-Initiated Mode	65
В	Setu	ıp and	Tear Down Delay Benchmarks	67
	B.1	Bench	marks Without Addition Delay	67
		B.1.1	MN Sender, Sender-Initiated, No Delay	67
		B.1.2	CN Sender-Initiated, No Delay	70
		B.1.3	MN Sender, Reciever-Initiated, No Delay	72
		B.1.4	CN Sender, Reciever-Initiated, No Delay	74
	B.2		marks With Additional Delay	76
		B.2.1	MN Sender, Sender-Initiated, Delay	76
		B.2.2	CN Sender, Sender-Initiated, Delay	78
		B.2.3	MN Sender, Reciever-Initiated, Delay	80
		B.2.4	CN Sender, Reciever-Initiated, Delay	82
Bi	bliog	graphy		85

1. Introduction

Advanced use cases in the current Internet and—even more so—future extensions require signaling to establish IP resources and negotiate related service parameters such as Quality-of-Service reservations. The Next Steps in Signaling (NSIS) working group at the IETF is creating a generic framework for signaling solutions. One of the goals for this framework is the support of current and future mobility solutions as an important use case. Mobility adds some interesting chalanges which are different from normal operation. For *Quality-of-Service* signaling as an example, reservation parameters have to be renegotiated along the new path whenever a movement occurs, established reservations along the obsolete paths should be torn down so that the allocated resources are available to other clients again, and—depending on the new location of the mobile endpoint—the reservation might have to adapt to the new conditions. In addition, the address information of a network flow does not necessarily serve as a unique identifier that is valid for the lifetime of the connection. Instead, the address information is variable and might change with every movement. In order to operate properly in a mobile environment a signaling application must be aware of mobility events—such as handovers—and be able to react with an appropriate action.

The signaling protocols under development in the NSIS working group are divided into two layers:

- 1. The Transport Layer that implements basic transport facilities. The transport layer protocol is responsible for discovering other signaling nodes along a given path, establishing state with a signaling enabled next hop and exchanging messages with neighboring nodes. It also provides functions to authenticate and authorize neiboring nodes. Currently there is only one protocol defined for this layer: the General Internet Signalling Transport (GIST) [14]. Protocols in this layer are referred to as NSIS Transport Layer Protocols or NTLP.
- 2. The application specific *Signaling Layer* protocols build upon the functionality provided by the transport layer. These protocols are called *NSIS Signaling Layer Protocols* or *NSLP*. At this time there are draft protocol specifications for Quality-of-Service [8] and NAT/Firewall [19] NSLPs.

The working group has also produced a mobility draft document [13] that discusses the interaction and compatibility of these proposed protocols with mobility. This particular draft is the basis for the work presented herein.

1.1 Objectives of this Thesis

The aim of this work is to extend an existing *Signaling Application* that implements GIST and the QoS-NSLP with mobility awareness in order to perform the signaling operations outlined in the mobility draft [13]. Based on the required modifications an evaluation of the proposed signaling stack and its applicability to mobile scenarios will be elaborated. In addition this will provide some numbers on the general signaling performance and delay of service negotiation in mobile scenarios.

Mobility management is provided by MobileIPv6. This technology provides transparent mobility support in IPv6 networks and exercises most—if not all—challenges that come up when dealing with general IP mobility.

1.2 Structure of this document

The remainder of this document will firstly—in Chapter 2— introduce and describe the basic principles of MobileIPv6 and Quality-of-Service signaling as well as review other related work. The Analysis chapter discusses the main problems that need solving in light of the current state of the examined software and protocols. Chapter 4 provides theoretical solutions to the identified problems and considers alternatives. In addition this chapter also describes the actual implementation changes and additions. Chapter 5 provides experimental proof that the chosen design and implementation are sufficient to provide signaling for mobility scenarios. In addition it outlines and summarizes how and if the required design and implementation decisions impact on the current state of the NSIS protocol stack drafts. Finally—in Chapter 6—a short summary and further directions are given.

2. Background and Related Work

This chapter provides a short introduction to the technologies used. It also establishes some common terms used throughout the rest of the document. Most of the terminology is shared with the cited Internet drafts and standards so that readers already familiar with these works can proceed to the end of this chapter in Section 2.3 that discusses other related work.

2.1 Mobility with MobileIPv6

The foundation for mobility for this work is provided by *MobileIPv6 (MIP6)* with colocated *Care-of-Addresses (CoA)* as defined in RFC 3775 [5]. Figure 2.1 provides a high level overview of the architecture with additional annotations that are required further below.

The problem any mobility management needs to solve is that once a mobile node changes its location it also changes its IP address as the address encodes an endsystem identification and network location at the same time. After an address change all existing connections from or to the old address are no longer valid. Applications with open connections for the old address will stall and have to re-connect with their peers.

With MIP6 a *Mobile Node (MN)* is assigned a *Home Address (HoA)* located in the home network that serves as a unique identifier for all connections from and to the MN. In addition the MN acquires one ore more *Care-of-Address (CoA)* at its current location. MIP6 provides a transparent mapping between these addresses and thus hides the actual location from a communication peer—called *Correspondent Node (CN)* in terms of MIP6—as well as applications running on the MN itself.

In order to realize the mapping on the wire there are two basic modes of operation: Tunnel- and Route-optimization mode.

• *Tunnel mode* is used when a CN has no support for MIP6 and during the initial contact. When a CN wants to talk to a MN it sends traffic to the MN's HoA located in the MN's home network. The IP datagram reaches the home

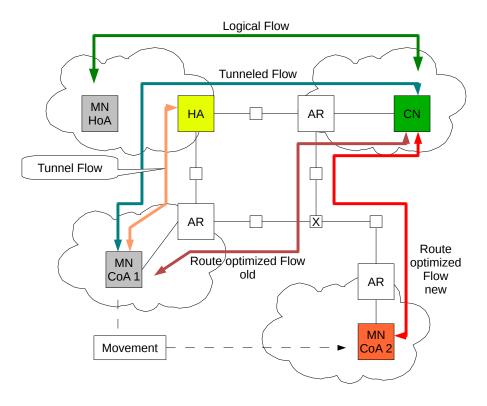


Figure 2.1: MobileIPv6—Basic operations

network by means of normal IP routing. If the MN is not available at the homelink a special service node within the home network—the *Home Agent* (HA)—intercepts the packet on behalf of the MN. Because the MN registers and updates its CoA with the HA, the latter knows the current location (i.e. the current CoA) of the MN and forwards the intercepted packet through a *tunnel* that is established between the HA and the MN at its CoA. In the opposite direction—if the MN wants to reply—it uses the same tunnel to send the packet to the HA that then forwards it on behalf of the MN using the HoA as the packet source. This is valid since the HA is located at the home link where the HoA is located. In addition, the MN can use the tunnel to the HA to initiate contact with yet unknown CNs.

• Route-optimization is used with MIP6 enabled CNs. The MN and CN establish a *Binding* between CoA and HoA. Once a Binding is in place the MN can send traffic directly from the CoA to the CN—using the optimized route between the current location and the CN. In turn, the CN will also send traffic directly to the MN's CoA. Special IPv6 options are used to differentiate route-optimized packets from normal traffic and both sides check for an active Binding before accepting such traffic. Section 2.1.1 provides a more detailed discussion of these operations.

As the MN moves to a new location and acquires a new CoA it updates existing Bindings and thus connected CNs will know where to send their traffic. There is also a Binding between the MN and its HA that ensures that the tunnel follows the MN to the new location.

Independent of the used mode of operation an application on either side of the connection always sees the HoA as local or peer address on the socket layer.

2.1.1 Logical and Actual Network Flows

In Figure 2.1 one can see that the use of MobileIP may result in creation of various flows that differ from the *logical flow* that is visible to the application. When we speak of a logical flow, we mean the flow originated from or destined to a MN's HoA. Only if the MN is at its home network the logical flow is identical to the *actual flow(s)* along which the traffic is sent. In tunnel mode there are two actual flows: The inner, *tunneled flow*, which can be seen as an extension of the logical flow after the HA has intercepted it, and the outer, *tunnel flow*, that carries the encapsulated tunnel packets. In route-optimization mode there is the route optimized flow where the HoA(s) in the logical flow are replaced by the MN's current CoA. In order to do signaling in these scenarios the signaling application (e.g. QoS NSLP) must be aware of the actual flow(s) to perform its task correctly.

2.1.2 MIP6 signaling and Datastructures

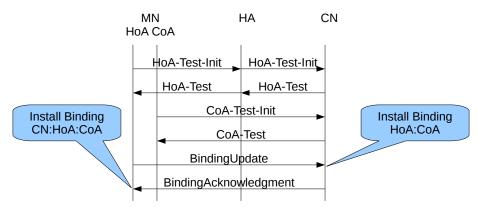


Figure 2.2: MobileIPv6—Binding Update Process

As mentioned earlier MIP6 performs signaling to inform the HA and MIP6-enabled CN of the MN's CoA. The process is outlined in Figure 2.2. It involves a series of tests to ensure that the MN is really in control of both the CoA and HoA to avoid the use of MIP6 in spoofing and amplification attacks. The MN takes tokens from those tests and generates a *BindingUpdate (BU)*. Once the BU is received at the HA or CN and the tokens match, the peer replies with a *BindingAcknowledgement (BA)*. The peer also installs a *Binding* in its *BindingCache*. The Binding stores the MN's HoA and CoA and allows the peer to perform route-optimized communication to the MN. After the MN has received the BA it installs its own Binding. This Binding is stored in the MN's *BindingUpdateList (BUL)* and contains the MN's HoA and CoA as well as the CN's address for which the Binding is valid. At this point the MN can also send route-optimized packets to the CN at this address.

Note from the above that the receipt of the BindingUpdate or BindingAck at the CN and MN respectively indicates the earliest time route-optimization to/from the new CoA is possible. Consequently, we will use these events as triggers for the QoS-Signaling to update any affected reservations. Also note that the BindingCache and BindingUpdateList contain all active Bindings at any time.

2.2 The NSIS architecture

Figure 2.3 gives an overview of the NSIS architecture. It shows the two layer architecture with the GIST NTLP at the bottom and various NSLPs on top. The NSLP

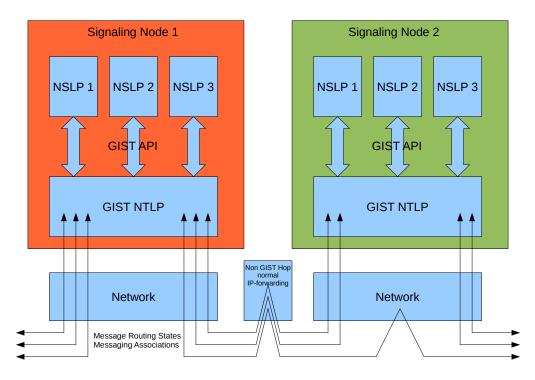


Figure 2.3: The NSIS architecture and layering

layer implements the actual signaling application, while GIST layer only provides common basic functionality required and used by all NSLPs. The NSLPs are responsible to manage end-to-end state, if required. Figure 2.4 depicts the process. GIST only holds state with its direct GIST neighbors. A direct GIST neighbor is not necessarily the next IP-hop, but can be several IP-hops away. Also, if the direct GIST-neighbor is not enabled for a certain NSLP it might be skipped for state installation for that NSLP.

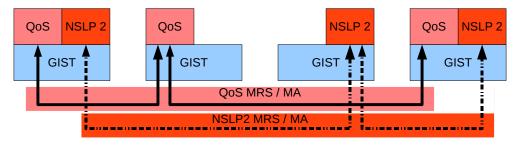


Figure 2.4: NTLP Hop-to-hop state

The GIST API, offered to the NSLPs, evolves around two basic functions to send and receive messages with some additional functions to manage state and receive information about network topology changes.

When an NSLP wants to send an initial signaling message for a flow it provides GIST with the following information:

- A **Session-ID** to manage end-to-end state. GIST is oblivious of the meaning of the SID and forwards it verbatim inside the resulting messages.
- The Message Routing Information (MRI) for the flow. This item contains a description of the flow: Source and destination address, protocol, source and

destination port, as well as additional information to classify the flow such as SPI or the IP6 Flow Label. We will call the sum of this information or a sufficient subset thereof the *Flow Identifier*. The MRI object that is used as the argument for the API call also selects a *Message Routing Method (MRM)*. Currently GIST defines three MRMs:

- **Path-coupled** (**PC-MRM**) where GIST attempts to send the signaling messages along the same path as the flow.
- *Explicit-Signaling-Target (EST-MRM)* where GIST will send the signaling message directly to the destination of the flow instead of establishing state along the path.
- **Loose-End (LE-MRM)** which is used for NAT discovery and proxy operations.

For the scope of this work we are only concerned with the PC-MRM.

Transfer parameters that tell GIST what kind of state to install, how many GIST- and IP-hops the message is allowed to travel and properties for the state GIST should install as a result of the message. The NSLP can select between unreliable, reliable and confidential transport and it is up to GIST how to best provide the requested mode selecting a suitable transport protocol (UDP, TCP, SCTP, TLS).

The payload for the signaling message itself.

Assuming PC-MRM and unreliable transfer, Figure 2.5 shows the API and signaling messages exchanged between the NSLP and GIST, and neighboring GIST nodes respectively. GIST starts operation by discovering its next neighbor on the path. It does so by sending a *GIST-Query* message to the flow destination. This Query is intercepted by the next GIST node that—in return—replies with a GIST-Response. The first GIST node completes the three-way-handshake with a GIST-Confirm. At this point both GIST nodes have installed a—so-called—*routing state* for the flow described in the MRI and the NSLP that initiated the exchange. Now the first GIST node can send the actual payload to the neighbor.

The receiving GIST instance informs the NSLP via a *ReceiveMessage* API call. The NSLP detects that it is not the final destination of the message by looking at the MRI and asks GIST to forward the message.

Again, the GIST node sends a Query to discover its next neighbor. This Query message should closely resemble packets of the flow and thus GIST attempts to send it with a spoofed IP-source address of the flow source. The GIST node can, however, choose to use one of its own addresses as IP-source address in the Query message. This *Signalling Source Mode* is instrumental in detecting legacy NAT hops. Otherwise, the address of the GIST node itself is also stored in the Query message's *Network Layer Information (NLI)* object so that the intercepting/receiving GIST node knows where to send the Response to. Once the routing state has been established the GIST node forwards the payload as requested.

The NSLP on the final hop decides to send back a reply on the NSLP level. In order to do so, GIST provides a *Source Identification Information Handle (SII-handle)*

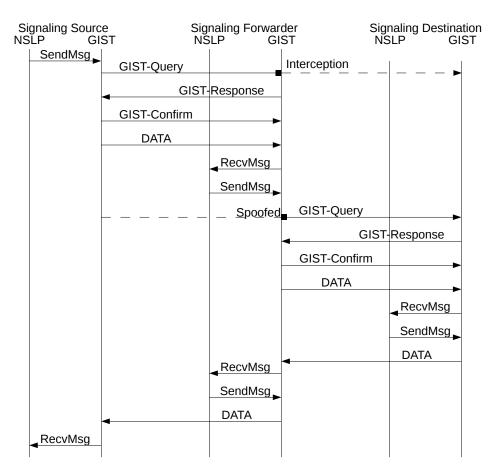


Figure 2.5: Basic signaling process

with the ReceiveMessage API call for the routing state over which the message was received. This handle can be used in the SendMessage API call to send a message over an existing routing state to a known peer.

GIST regularly retransmits Queries for existing routing states in order to detect topology changes. This process is called *GIST probing*. If a new peer is detected, the NSLP is informed of the new peer and receives a new handle to use the resulting routing state to (re-)send messages in order to update the end-to-end state as a result of the network topology change.

In addition to simple routing state, GIST can also establish a *Message Association* (MA) with a neighbor if reliable or confidential transport is requested. The QoS-NSLP works over unreliable transport by default as means of confirmation are built into the signaling protocol itself and MA-setup introduces additional, undesired delay. We do not work with Message Associations in our implementation due to implementation obstacles in the way MAs are currently set-up.

2.2.1 Quality-of-Service Signaling in NSIS

Quality-of-Service signaling is required whenever a node wants to reserve resources for traffic originated from or destined to itself. The QoS NSLP provides means to establish, manage and destroy such resource reservations. It is designed to allow for both sender- as well as receiver-initiated reservations—in contrast to the currently deployed *Resource ReSerVation Protocol (RSVP)* [3] that only supports the latter. The design allows for using a plethora of different QoS-mechanisms including IntServ as well as DiffServ. It includes support for reservation sessions, allows to aggregate sessions as well as to bind related sessions together. This will be required to combine the reservations for a tunneled flow with the reservation for the tunnel flow itself (see Figure 2.1).

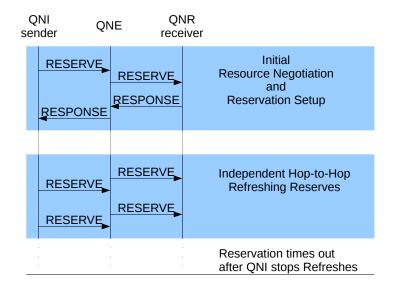


Figure 2.6: Basic QoS signaling messages – sender-initiated

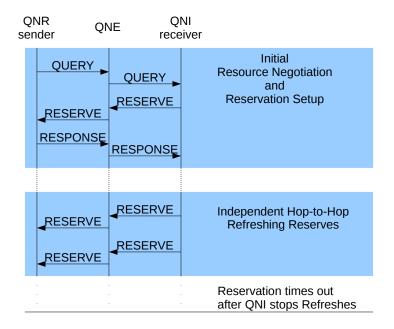


Figure 2.7: Basic QoS signaling messages – receiver-initiated

The basic message exchange performed by the QoS-NSLP is shown in Figure 2.6. In order to establish a reservation the QoS-NSLP initiator (QNI) sends a RESERVE message along the path of the flow the reservation is for. The QoS-nodes along the path (QNEs) forward the message until it hits the destination—the QoS-NSLP responder (QNR)—or one node detects that it can not satisfy the requested reservation. Once the destination receives a RESERVE it replies with a RESPONSE message that again travels back, hop-by-hop, until it reaches the initiator again. It should be mentioned that the RESPONSE is optional and has to be specifically

requested in the RESERVE message by attaching a RII-object. Setting up of the QoS reservation requires a RESPONSE most of the time, however. On the way the QoS-nodes set-up the necessary resources to the negotiated amount as they forward the RESERVE and later commit the resources as the RESPONSE is processed. Once the RESPONSE is received at the QNI the reservation is completely set up and the resources can be used. In order to preform receiver-initiated reserves (cf. Figure 2.7), the flow sender starts by sending a QUERY message to the receiver that then—in reply—sends a RESERVE and the mechanism continues as above. The QoS-NSLP uses a soft-state mechanism, so periodical refreshes are necessary to keep the reservation active.

2.3 Related Work

This section reviews documents and drafts from the NSIS working group that build the foundation for our work. We also review other approaches to the problem of QoS in mobile environments and highlight differences to our work. Finally, we give a brief overview of the software that is the foundation for our extensions.

2.3.1 From the NSIS Working Group

The mobility-draft [13] serves as the theoretical background for this work. It discusses the main problems with mobility and signaling and introduces some new concepts to deal with these problems. The main findings are:

- 1. Signaling must be preformed along the actual flow rather than the logical flow.
- 2. Movements are different from normal re-routing events and special care is required to avoid problems such as double reservations or accidental reservation tear down. In order to tackle this problem, the draft introduces the concept of a *Crossover node (CRN)* (in Figure 2.1, the CRN is marked with an "X"). The CRN is the first node that is on both the old path before a movement as well as on the new path after a movement. This node is responsible for tearing down the obsolete part of the old path. It also must filter accidental tear down messages coming from the old path after the last node has detected that the MN is no longer present at its end of the path.
- 3. Tunnel mode must be considered and needs special handling. For more detailed discussion of the operations required for tunnel mode, the mobility-draft falls back on the dedicated tunnel-draft [15].

Most of these points will be examined in more detail during our analysis. The draft [13] also provides some good examples which we will revisit in later chapters.

An early draft document [16], also produced in relation to the NSIS working group, provides an excellent discussion of the issues that arise from the different flows discussed in Section 2.1.1 and the consequences for the NSIS architecture. Most noteably, it includes an extensive discussion whether signaling should be done for the logical or actual flow, and at which layer to use which flow representation. We will reiterate some of the points in this draft in the next chapter as we discuss the different flows.

In addition to the mobility-draft, which focuses on the QoS-NSLP mostly, there is another article [18] that shows how the NAT-Firewall-NSLP can be used to allow MobileIP signaling, route-optimization and tunnel establishment in environments with restrictive firewall settings. Similar to the mobility-draft, this article is focused on the signaling process itself and does not provide details on the actual interaction between the signaling application and the mobility management.

2.3.2 Other approaches to QoS-signaling for mobility

New network developments these days, at least since 3G, always have mobility and some kind of Quality-of-Service support on the checklist of desired features. Many works were produced in this context ([9]). However, most of the approaches originating from the context of classical, centrally managed telephone networks rely on central management infrastructure and highly integrated solutions. With the move towards all-IP based solutions—in 4G networks and beyond—a slight shift of focus has happend and newer approaches move away from the centralization ([4]). Still, most currently proposed or deployed solutions tightly integrate mobilityand QoS-Management. This limits the implementation freedom serverly and often precludes future extension and adaptation.

On the other hand there are some proposals to add QoS-functionality to specific IP-mobility management systems. For instance [6] that suggests to piggyback QoS-information on the MobileIPv6 signaling messages. Again, these approaches lack in flexibility and extensibility as they focus on a specific environment.

The approach presented herein is different from that as it depends on a generic signaling framework that is only loosely coupled with mobility management. This allows changes in the mobility management as well as the QoS-signaling independent of each other, facilitating future improvements and adaption to new environments. At the same time it does not preclude a more tightly coupled implementation in order to facilitate environment specific optimizations. The signaling framework provides consistent semantics for the requested QoS-parameters and it is up to the local implementation how to best provide them.

Several approaches ([4]) utilize RSVP for QoS-signaling in the same way we use the NSIS framework. While this has similar benefits as our approach, RSVP has not been designed with mobility in mind and depends—for example—on the address information to correlate messages from the same session. As we mentioned above and will discuss in more detail later, this is a serious problem in mobile environments. The works in this category usually propose extensions to RSVP to include the HomeAddress as a session identifier ([17]) to work around this limitation.

2.3.3 Implementation Environment

The implementation of this work is based on the NSIS protocol implementation [2] provided by the Universität Karlsruhe (TH). This provides a complete implementation of GIST as well as the QoS-NSLP. An overview of this implementation environment—including the MobileIPv6 daemon—is provided as Figure 2.8. In contrast to the draft it uses a three layer approach. A library provides basic data types and a high-level wrapper to transport protocols. GIST is implemented as either a standalone daemon that provides the NSLP API calls over a unix domain socket, or

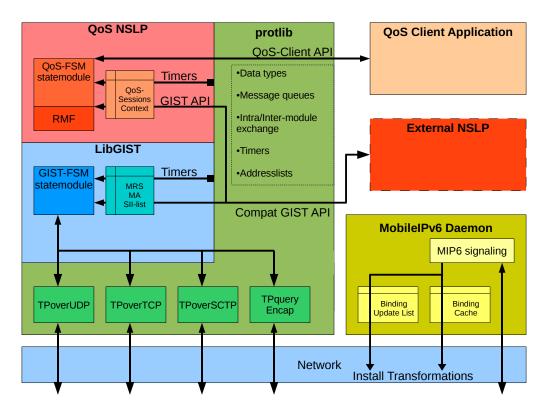


Figure 2.8: Architectural Overview of the Implementation Environment

it can also be used as a library linked to the NSLP application directly. The whole implementation is written in C++ and multi-threaded. All communication is done over internal message exchange between the threads making it easy to compartmentalize NSLPs into different address spaces. The QoS-NSLP application we use for our experiments is statically linked to the GIST library. It also links to a separate library that provides the QSPEC handling used to describe actual QoS reservations. This is not show in the figure.

Mobility support is provided by the Linux kernel with the *MobileIPv6 daemon* from the USAGI project[1]. The kernel provides a unified interface to apply transformations to the IPv6 header of incoming and outgoing datagrams. The MIP6-daemon uses this interface and realizes the MIP6 signaling described in some detail above. It also watches the interfaces for new Care-of-Addresses and other significant events.

3. Analysis

This chapter will identify the main, structural problems and challenges for Qualityof-Service signaling in a mobile environment. We do so by walking through several examples identifying the problems in each of them until we summarize the findings and come up with what needs to be implemented to resolve these issues.

3.1 QoS-signaling in Different Mobility States

In order to analyze what kind of special handling is required in the face of mobility we look at the MobileIP6 architecture step-by-step and try to identify what kind of signaling is required in the different scenarios.

3.1.1 At Home

While the MN is at the home network and communicating from the HoA directly, there is no special handling required as the actual and logical flows are identical.

3.1.2 Tunnel Mode

In tunnel mode (see Figure 3.1) there are two flows: the tunneled flow—an extension of the logical flow that is transparent to the CN—and the tunnel flow that carries the encapsulated packets between the HA and the MN. In order to establish Quality-of-Service for traffic passed between the MN and CN we must establish QoS reservations for both these flows. As described in the tunnel-draft [15] special handling is required at the endpoints of the tunnel. Initially either the CN or the MN—depending on which side the flow sender is—tries to establish a reservation for the logical flow and sends a RESERVE message along that path. If the MN is the initiator it must immediately also establish a reservation along the tunnel flow (or reuse/update an existing reservation). If the CN is the flow sender the RESERVE will travel towards the home network as normal, once the HA intercepts the packet it has to take care of a respective reservation for the tunnel flow. Once both reservations are established successfully the HA and MN should *bind* the two sessions together in order to notify the other if one changes or goes down. The QoS-NSLP has support for all the

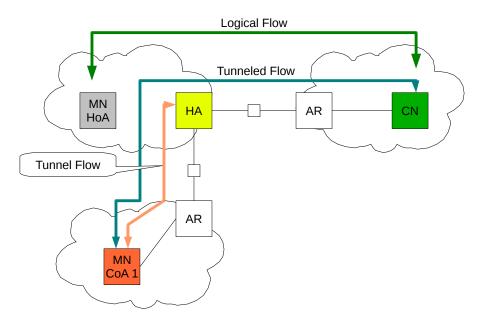


Figure 3.1: MobileIPv6 in tunnel mode

required mechanisms to cater for these operations and the only challenge in this scenario is the interaction with the actual tunneling mechanism. Figure 3.2 shows the signaling messages to establish a reservation initiated at the CN. Note that the reservations for the inner and outer tunnel flow could happen in parallel.

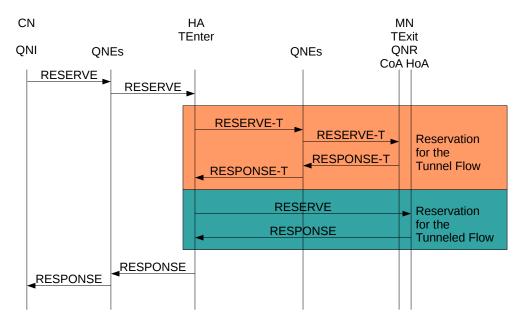


Figure 3.2: QoS signaling in tunnel mode with CN as QNI

This figure also shows that the inner and outer flow terminate at different addresses at the MN. The tunnel flow is between the HA and the MN's CoA, whereas the tunneled flow terminates at the MN's HoA. This has consequences for any Routing State that is used to carry the corresponding signaling messages.

Figure 3.3 shows a serious problem with tunnel mode when the HA uses signaling source mode for the outgoing GIST-Query. As the HA always has an active Binding with the MN, IP-datagrams from the HA-Address to the MN's HoA will always be

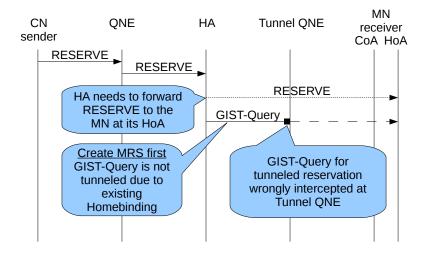


Figure 3.3: Problems with GIST-Queries in tunnel mode

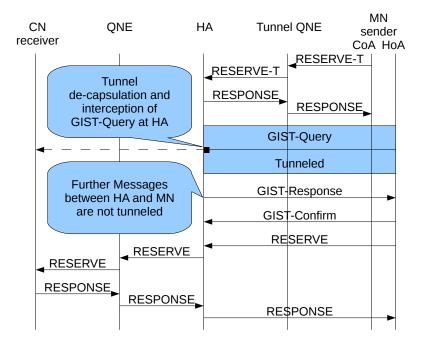


Figure 3.4: Same situation as in Figure 3.3 with MN as sender

route-optimized. This also applies to the GIST-Query that is supposed to establish routing state between the HA and the MN at its HoA. As a result the Query is not encapsulated in the tunnel and will be intercepted by any intermediate NSLP nodes. The intercepting node will then process the RESERVE message from the HA and try to forward it to the MN. In order to do so it sends a GIST-Query towards the MN's HoA that ultimately arrives at the HA again creating a loop (unless every intermediate hop also has an active Binding with the MN).

In order to avoid such problems there are three possible solutions:

- 1. Avoid GIST-Query interception for route-optimized packets.
- 2. Avoid signaling source mode for GIST-Queries from the HA to the MN.

3. Force GIST-Queries in signaling source mode from the HA destined to a connected MN's HoA into the tunnel encapsulation, regardless of any active Bindings.

Fortunately, this is not a problem when the MN is the QNI as one can see from Figure 3.4. In this scenario, the GIST-Query datagram will always go into the tunnel as it is destined for the CN. If there exists an active Binding with the CN, the MN would not try to establish a tunnel mode reservation in the first place. Also note that further messages (after the GIST-Query) between HA and MN need not necessarily be tunneled. This is not a problem as these messages will not be intercepted at intermediate nodes but are treated as normal datagrams and forwarded to the destination as such.

3.1.3 Route-Optimization

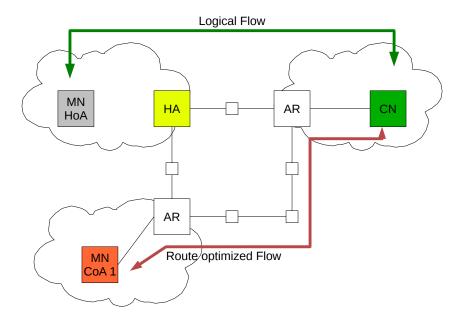


Figure 3.5: MobileIP6 in route-optimization mode

Once in route-optimization mode no traffic flows along the logical path anymore and consequently any QoS-reservation must be made along the actual path. The signaling operations required are not at all different from the normal operation, but care must be taken to the Message Routing State that is formed to and from the MN. All MRSs that carry route-optimized flows should be terminated at the MN's CoA, otherwise—if the HoA was used—the MRS would be tunneled over the HA or get route-optimized itself. This would impose serious latency to the signaling due to the additional HA detour. This is discussed in more detail in section 3.4.

Intermediate nodes (QNEs) on the (route-optimized) path between the CN and MN will not see any difference between a route-optimized flow and a normal flow. No special handling or additional features are required. Earlier draft documents [16] were considering to keep the logical flow source and destination in the MRI for route-optimized flows. This, however, would mean that all nodes on the path would have to parse the mobility options that are placed in the IP packets in order to

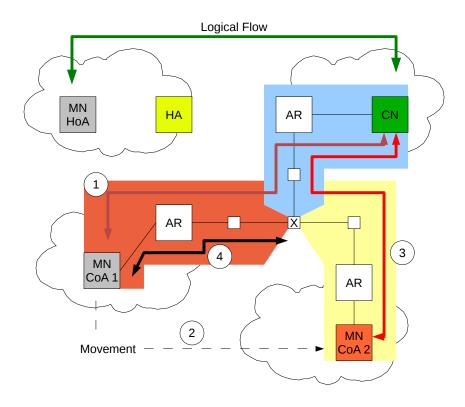


Figure 3.6: MobileIP6 in route-optimization mode after a movement

classify the packets that belong to the route-optimized flow. Using the actual flow in the MRI for the route-optimized reservation makes this much easier.

Using the route-optimized flow identifier, however, raises another problem illustrated in Figure 3.6. After a movement (cf. 2 in the figure) the MN acquires a new CoA and the flow changes (cf. 3 in the figure). This means that the flow identifier alone cannot be used at intermediate nodes to detect a mobility event. Fortunately, the QoS-NSLP uses another, flow identifier independent SESSION_ID to track reservations and end-to-end state. This allows intermediate nodes to correlate messages before and after a movement to the same session. The first node that already has an active reservation with the same SESSION_ID but different flow identifier will note this fact and become the Crossover Node (CRN) as described in the mobility-draft [13]. The CRN is denoted by an "X" in the figure. It is the job of the CRN to initiate release of the—no longer required—resources on the now obsolete path (cf. 4 in the figure). In some situations—discussed in detail in the following section—the CRN can not directly issue a tear and can only inform the old path that it has detected a route change. It is then the job of the last node on the old path to detect that it is a dead-end and to send a tear towards the CRN. The CRN then has to block further propagation of this tear on the still valid part of the reservation.

3.2 A Detailed Look at Signaling Operations

Taking a closer look at the required signaling operations we identify four different cases in a mobile environment: Sender- and Receiver-initiated reservations with either the MN or the CN as flow sender. The flowing message flow figures show the process for route-optimization mode in detail.

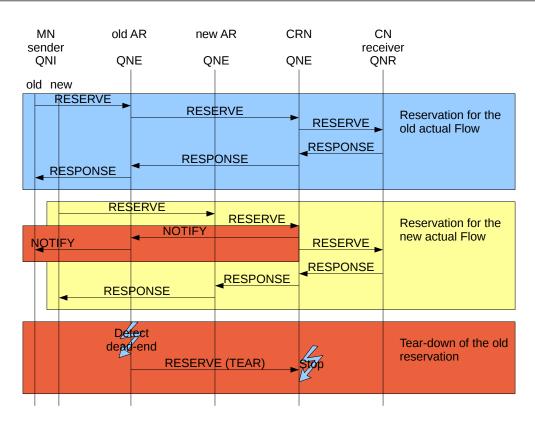


Figure 3.7: QoS-Signaling Messages: MN sender, sender-initiated

In the case where the MN is sender and QNI (cf. Figure 3.7) the Crossover Node detects a change of its upstream peer when receiving the new RESERVE message. Thus, it can not tear down the old path on its own, but can only inform the old path that it has detected a routing change by sending a NOTIFY message. From that point on it will silently drop refreshing RESERVEs from the old path. At some point the last QNE on the old path (usually the old Access Router) will detect that its upstream peer is no longer available, together with the earlier NOTIFY it now can assume that it is the dead-end of the old path and sends a RESERVE with the TEAR-flag set in order to free the resources. The CRN stops further propagation of the TEAR. Note that there can be other QNEs between the CRN and the dead-end on the old path. The resources on these nodes will also be freed as the TEAR from the dead end is processed.

When the CN is sender and QNI at the same time (cf. Figure 3.8) the situation is different. The CRN detects a change of its downstream peer when forwarding the new RESERVE message. At this point it has to store the old MRI in order to later send a RESERVE with TEAR-flag. It does so as soon as it receives the RESPONSE for the new reservation and is thus sure that the old reservation is no longer required. The TEAR is forwarded on the old path—again along as many QNEs as there are between the CRN and the dead-end. The dead-end QNE (again, usually the old AR) tries to forward the message to the MN at the old CoA that is no longer available and the process stops.

The receiver-initiated cases (see Figures 3.9 and 3.10) look very similar to the respective receiver-initiated case. The only difference is the initial QUERY message to start the process.

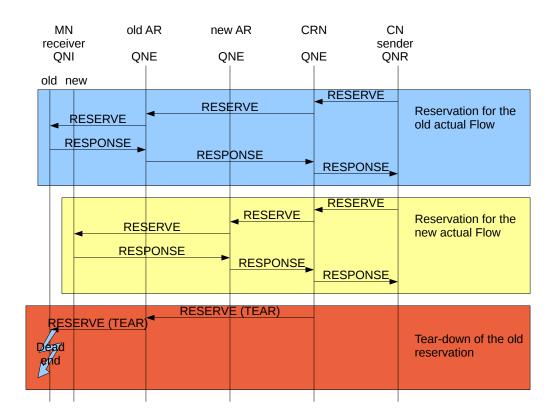


Figure 3.8: QoS-Signaling Messages: CN sender, sender-initiated

Figure 3.9: QoS-Signaling Messages: MN sender, receiver-initiated

In addition, it should be noted that the QNR can also be the Crossover Node if there are no other common QNEs between the old and new path. In this case the QNR will perform the same tasks as the CRN as it has the same information available.

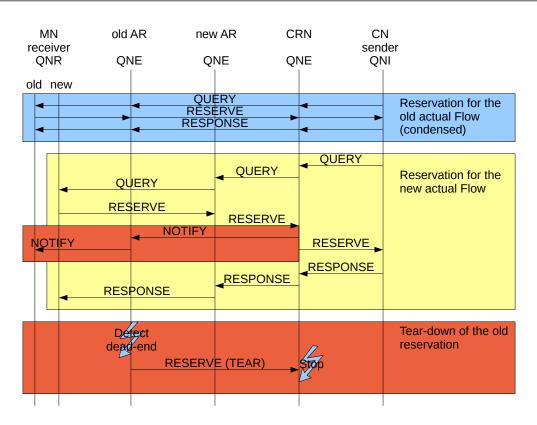


Figure 3.10: QoS-Signaling Messages: CN sender, receiver-initiated

Also of note is that in cases where the QoS-NSLP cannot send a TEAR from the CRN directly, because the direction of the reservation does not allow so and we fall back on sending a NOTIFY, the QNEs on the old path will be issuing refreshing RESERVEs for some time before the dead-end is detected and the path is properly torn down. It might even happen that the reservation on the old path times out before the dead-end is detected at all. Neither of this is a problem. We only have to ensure that the CRN properly filters the refreshing RESERVEs.

Finally, it is of note that the Mobile Node is almost always a Crossover Node as well, because the up- or downstream peer of the MN changes after the handover unless the movement is localized enough that the next GIST hop is the same as before. Most of the time this doesn't matter as the MN can not communicate from the old CoA and thusly can not issue any messages on the old path. The only exception from this is after the MN leaves its home network. In this scenario the routing state between the MN and HA has been established from/to the HoA and the MN can still use it to send a message to the HA, and the old path, over it. After this message has been sent the MN must make sure that the routing state is torn down, otherwise subsequent GIST probing attempts will be route optimized and confuse the next hop on the new path, as it will interpret the newly established routing state as a routing change and start CRN processing.

3.2.1 Tunnel Mode Operation

The basic signaling operations for tunnel mode are already described in Section 3.1.2. In essence the problem can be reduced to a route-optimized reservation between the MN and the HA. As we will show in the implementation there is no other special handling for tunnel reservations required once it has been created. The

only issues that need to be addressed is the creation and—after switching to routeoptimization—the destruction of the tunnel reservation.

Another issue to consider is the fact that after a handover there is a short time where the MN and CN may fall back to tunnel mode before a new binding has been established. This tunnel is usually very short-lived and does not justify an additional tunnel reservation. In order to avoid creating a tunnel reservation just to tear it down again a few seconds later, we will introduce a hold-off timer that is started as soon as we detect a tunnel and establishes the required tunnel reservation after a short wait period unless the flow has switched to route-optimization in the meantime.

3.3 Mobility unaware NSLP Implementations

From the analysis so far it is obvious that all nodes that are active components in the MobileIP setup (the Mobile Node, the Home Agent and MobileIP enabled Correspondent Nodes while not in tunnel mode) need also mobility aware signaling applications. The impact on operational reliability differs. While in tunnel mode the impact is limited to the tunneled section. If the signaling application on either MN or HA are not mobility aware, this might result in a missing reservation for the tunnel section—depending on the direction of the reservation. Once route-optimization is enabled it is mandatory that the signaling implementation on the flow sender is mobility aware, otherwise it will—as discussed above—try to establish a reservation for the logical flow. If this attempt reaches the receiver and the implementation on that node is mobility aware it is possible to detect the error and ask the mobility management to fall back to tunnel mode. Otherwise the signaling will fail.

Table 3.3 summarizes possible scenarios and confirms the assumption that the Mobile Node is key in the process. As long as the signaling application on the MN is aware of its own mobility everything fails gracefully. The missing tunnel reservation can not be worked around. Eventhough the MN is able to detect the case where the signaling application on the HA forgets to create a tunnel reservation it can not issue a reservation itself if it is not the flow sender. A possible sollution would be to send a special NOTIFY or QUERY message to the HA via the EST-MRM that would then make the HA issue a reservation. Currently the QoS-NSLP specification does not offer such a message, however. It should be noted that a receiver-initiated reservation does not offer what is needed. Because the signaling path is always built from sender to receiver, it is most likely different from the path in the opposite direction due to asymmetric routing.

3.4 Message Routing State from/to the MN

In order to transmit actual traffic, GIST establishes so-called Message Routing States (MRSs) along the discovered path, basically the state of a signaling connection between neighboring GIST nodes. On the MN much care has to be taken concerning the decision whether to use the HoA or the CoA as source/destination for an MRS. In order to establish the MAs as closely as possible along the path of the actual flow, the CoA is the right choice in most cases. Figure 3.11 illustrates the additional problem already mentioned in section 3.1.3. If the message routing state is established from

Mobility awareness	Operation mode	Impact
MN \checkmark , HA \checkmark , CN †	Tunnel modeRoute optimization, MN is senderRoute optimization, CN is sender	none none fall back
MN \checkmark , HA †, CN \checkmark	Tunnel mode, MN is sender Tunnel mode, CN is sender route optimization	none no tunnel reservation none
MN $\checkmark,$ HA †, CN †	Tunnel mode, MN is sender Tunnel mode, CN is sender route optimization, MN is sender route optimization, CN is sender	none no tunnel reservation none fall back
MN †, HA $\checkmark,$ CN \checkmark	Tunnel mode, MN is sender Tunnel mode, CN is sender route optimization, MN is sender route optimization, CN is sender	no tunnel reservation none fall back none
MN †, HA $\checkmark,$ CN †	Tunnel mode, MN is sender Tunnel mode, CN is sender route optimization	no tunnel reservation none fail
MN †, HA †, CN \checkmark	Tunnel mode route optimization, MN is sender route optimization, CN is sender	no tunnel reservation fall back none
MN †, HA †, CN †	Tunnel mode route optimization	no tunnel reservation fail

Table 3.1: Different cases of mobility-aware QoS NSLP nodes

or to the HoA the resulting messages are tunneled to the HA and back incurring a serious delay on the way. Only in tunnel mode and for the inner tunnel reservation should the HoA be used as the source of the MRS with the HA. Depending on the mobility service implementation, special operations may be required to force communication from the CoA directly. This is discussed in more detail in Chapter 4.3.

3.5 Overhead due to MobileIPv6

We mentioned that MIP6 uses special IP6 extension headers to carry information about the HoA in route-optimized flows. These options impose a serious overhead on packets that are route-optimized. The overhead can amount to as much as 48 byte if both sides of the flow are mobile nodes. The same is true for tunnel-mode where an entire new IP-header is appended for the tunnel encapsulation. If the tunnel is protected by IPSEC there is even more overhead. For typical applications that need QoS—such as real-time video and audio exchange—a per-packet overhead of 40+ bytes can mean a bandwidth increase of 50% (40 byte overhead / (40 byte IPv6 header + 20 byte UDP header + 20 byte codec payload¹)). These applications tend

 $^{^{1}}$ e.g. G.729 (8 Kbps)

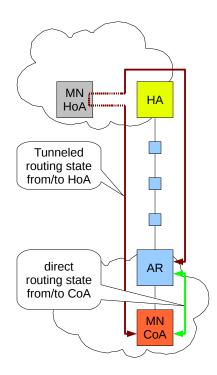


Figure 3.11: Tunneled and Direct Routing State

to use a steady stream of relatively small packets in order to minimize the delay. As the client application is oblivious of this overhead it will ask for a reservation based on the unmodified packet size. It is then the job of the signaling application to adjust the bandwidth according to the overhead. This is not trivial as the client application usually does not specify a packet size and rate for the data it intends to send, but instead provides other, more abstract configuration parameters—such as bandwidth and bucket size. In order to calculate modified values to account for the overhead, the signaling application has to deduct the mean packet size and rate from these abstract parameters.

3.6 Requirements

In this chapter we have identified a number of problems that need solving in order to provide functional QoS signaling in a mobile environment. The following requirements for our implementation must be resolved:

- 1. The signaling application needs to be aware of active MobileIP bindings and the resulting flow transformations.
- 2. The signaling stack (NTLP and NSLPs) must be aware of and react to mobility events.
- 3. The QoS-application must be aware of additional overhead induced by MobileIP specific extension headers or the tunnel encapsulation.
- 4. The signaling application must signal for the actual flow instead of for the logical flow as provided by the user applications requesting signaling from the signaling application.

5. The signaling stack must be able to communicate from the CoA directly.

Most of these depend on information available to the MIP6-daemon and thus we need an efficient way to obtain this information from it. In addition we need to decide where and in what form this information is required and design the interface accordingly. The next chapter will discuss this in detail.

3.7 Summary

The analysis so far shows that the QoS-NSLP is already well equipped to deal with mobility. The existence of a static SESSION-ID that is independent of the flow address information allows for easy correlation of messages for the same session before and after a movement. The existing re-routing handling provides a good abstraction and can be reused without much modification to handle mobility events as well. In route-optimization the required modifications and interactions with the mobility management are limited to the flow sender. For tunnel-mode additional modifications and interaction is required at the HomeAgent. In addition, the modifications are limited to the initial setup of a reservation and handling of mobility events. No modifications of the normal processing are otherwise required.

4. Design and Implementation

As mentioned before, most of the theoretical details about what to signal are already described in the mobility draft [13] and presented in Chapter 3.2. In our design we can focus on the problem of how to realize and implement the outlined signaling processes. The analysis in Chapter 3.6 summarizes the problems that need to be solved. This chapter provides a more detailed look at each problem in the specific environment and a high level solution. Further down herein we also discuss the actual implementation of the required services and changes.

4.1 Flow Info Service

One of the most fundamental problems we have identified during our analysis is the fact that we need to break the transparency of MobileIP and to provide means for the signaling application to query state from the MobileIP management service. In addition we require the MobileIP management service to send notifications to the signaling application for significant events, such as handovers, new CoAs and a change in the binding cache and binding update list. While there is a specification for a MobileIP6 management information base in [7] that would allow implementation independent access to the required information, the MIB is not implemented in any of the MIP6 services available to us at the time. Instead it was decided to roll an implementation specific service that provides only the required functionality. We call this *Flow Info Service* for its primary functionality.

The basic mode of operation is a request-response mechanism, as show in Figure 4.1. The signaling application sends a request indicating that it wishes to retrieve information about a certain flow. The Flow Info Service replies with the current state of that flow. In addition the Flow Info Service sends notifications whenever the state of an active flow changes. This provides mobility event triggers required by QoS NSLP to issue updating RESERVE or QUERY messages. This way the consumer (the signaling application) is able to cache the results provided by the Flow Info Service, but does not need to bootstrap and mirror the complete state in the MobileIP management. A lazy implementation can fall back to querying the state over and over, i.e. a polling mode.

The request needs to describe a flow, the information required for that are two IPaddresses (source and destination). No other information is required. The reply needs to describe three possible flow states:

- 1. No MobileIP flow because the source is not a HoA of the node or there is no active binding for the destination. It might turn out later on that the peer is a mobile node, but for the moment the flow is sent unmodified.
- 2. Tunnel mode the flow will enter or exit a tunnel at the current node, on the MN or the HA respectively. This happens when the flow source is a HoA and the peer is either MobileIP unaware or there is no binding established for it, yet. In addition to the state itself that response has to include the tunnel source and destination in order to enable the signaling application to establish a bound session for the tunnel section or update an existing session accordingly. Future implementations might want to provide a tunnel id that would make it possible to demultiplex the flow inside the tunnel on intermediate tunnel nodes, e.g by copying the IPv6 flow label or DSCP from the inner packet header. Currently there is no possibility to distinguish flows inside the tunnel. The tunnel-draft [15] has more details about tunnel-ids.
- 3. Route optimization there is an active binding for this flow and the flow source and/or flow destination will be rewritten. The information required in the reply consists of the new flow addresses.

Figure 4.1 gives a summary of the contents of the messages exchanged in the Flow Info Service.

Every reply should additionally indicate the per-packet overhead that is incurred by the translation. Even though this information can be deducted from the transformation itself, parts of it might be implementation specific. Finally, the reply should carry enough of the original request to enable parallel operation. The simplest solution is to quote the complete flow that is concerned. Requests are handled in the same order in which they arrive, consecutive requests for the same flow result in several replies with the requested information. This allows the client to issue parallel requests for different flows and from more than one consumer (in our case NSLP and NTLP) over a single Flow Info Service connection.

The notifications also use the reply message format and simply inform the client (the signaling application) about the new state of a flow. If the client cares about the state that was in effect before the event it will have to deduct that from its own state.

On the signaling application side we have to consider where and how to make the Flow Info Service available to the different application parts. The general spirit of separation of a network aware transport layer and a somewhat network unaware signaling layer would suggest that this service should only be required in the transport layer, which would then notify the signaling layer with information that is of interest to it. With the current interface design between transport and signaling layer, where the signaling layer has to provide the flow information (the MRI) for any message it wants delivered, this is not easily possible. It was considered to let the transport layer translate the MRI on the fly with the information available from the Flow Info

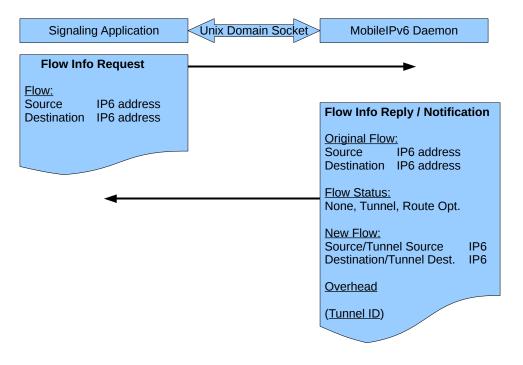


Figure 4.1: Messages for the Flow Info Service

Service. This would keep the separation. A similar mechanism was proposed to deal with network address translation (which is a similar problem) in the NAT-traversal draft [10, section 5.3]. It was decided, however, that this approach is not applicable when dealing with mobility as the signaling layer requires very specific knowledge of the flow status to function properly. While the MRI translation service could hide the addressing details, the transport layer would still have to provide a large amount of other information about the flows. It was decided that the interface extensions required to convey this information were too extensive. Instead the signaling layer is given direct access to the Flow Info Service and must provide correct flow information to the transport layer. This has the downside that every signaling application has to be made mobility aware, eventhough it might not require special handling. Considering the currently specified applications: Quality-of-Service and NAT-firewall—which both require rather extensive changes—it seems unlikely that future signaling applications could work without extensive knowledge of the mobility status. In addition, this design gives the most flexibility in implementing the mobility changes in the QoS-NSLP.

Figure 4.2 shows the placement and partitioning of the Flow Info Service and how the different components communicate with each other. The following sections describe the individual components in detail and specify the protocols for the various interfaces.

4.1.1 Flow Info Service – Provider

In order to export BindingCache and other mobility state information from the MIP6-daemon to the signaling application we added a Unix Domain Socket interface to the daemon code. The unix domain socket interface allows for inter-process communication. It uses a fixed packet size and allows for four types of packets that closely follow the previously described findings. The implementation allows for a

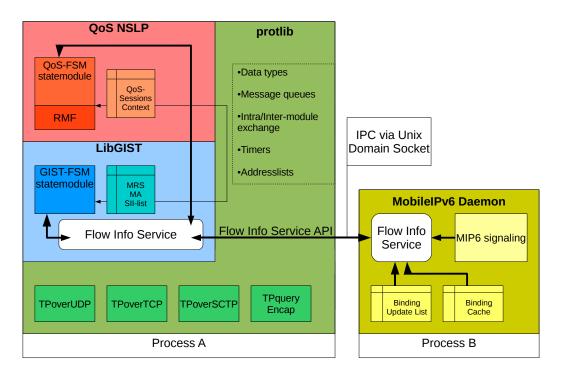


Figure 4.2: The Flow Info Service Placement

fixed number of concurrent clients that can be configured at compile time. For every client a new thread is spawned that accepts requests, looks up the information and sends a reply or error in return. If a mobility event occurs, the main thread iterates through all connected clients and sends an event datagram with the information relating to the mobility event.

4.1.2 Flow Info Service – Consumer

On the client side of the Flow Info Service (in the QoS-signaling application) both the NTLP and the QoS-NSLP layer need direct access to the service. In the current form, both layers reside in the same binary and address space so that they can share a common Unix Domain Socket connection with the provider. In the future it may be possible to have the NTLP and NSLP reside in different address spaces where each component would need to open a Flow Info Service connection with the MIP6daemon on its own. The handling of the UDS messaging is hidden behind a class that provides a single, convenient interface to lookup information for a flow. As the NTLP already provides a data structure that describes a flow—the Message Routing Information—this data structure is reused for the Flow Info Service interface as well. This is particularly convenient as most of the operations required by the NSLP evolve around the translation from a logical MRI to the actual MRI.

The interface looks as follows: Flowstatus *get_flowinfo(mri_pathcoupled &orig_mri); with "Flowstatus" resembling the same information as available in a Flow Info Service reply or event in terms of the data types available to the NTLP:

```
struct Flowstatus {
    enum flowstatus_t {
        fs_nothing,
                         /* no active binding -> no transformation
                                                                      */
                         /* active RO binding -> route-optimization */
        fs_normal,
                         /* active non-MIP binding -> tunnel mode
        fs_tunnel,
                                                                      */
        fs_home
                         /* home binding -> route-optimization
                                                                      */
    };
    flowstatus_t type;
    mri_pathcoupled orig_mri;
    mri_pathcoupled *new_mri;
    mri_pathcoupled *tunnel_id;
    uint32 pp_overhead;
};
```

The interface is part of a class object. At start-up the QoS-Application spawns a single thread of this class that will try to connect to the MIP6-daemon over the UDS and manage the socket. All interested parties are given access to the thread object and through that to the get_flowinfo interface. At the moment requests over the high-level interface are translated verbatim into a Flow Info Request and sent to the MIP6d and vice versa with the reply. Future improvements can easily implement caching at that place to avoid unnecessary UDS traffic, context switches, and other overhead. Casual measurement of the request delay suggests, however, that there is little reason for concern at the moment.

In addition to the get_flowinfo interface, the socket managing thread will also listen for event datagrams. On receipt of a notification, the thread sends an internal message to the NTLP layer. After NTLP has completed any actions that are required from its point of view (at the moment there is nothing in this category) the NTLP layer sends a special NetworkNotification to all locally connected NSLPs with the original MRI as reported in the event. The message must be delivered to all NSLPs as the NTLP does not have access to information regarding the logical flow and it can not deduct the old flow (prior to movement) from the information available at the time of the event.

4.2 Quality-of-Service NSLP changes

The changes to the operation of the QoS-NSLP required to work in a mobile environment have been outlined in Chapter 3.1. To recap, the client application asks the QoS-NSLP to establish a reservation for a flow. The flow provided is the logical flow as seen by the client application and it is the QoS-NSLP's job to translate this request to a reservation for the actual flow as seen by the MIP6 management. Once the reservation has been established, the QoS-NSLP must listen to MIP6 events that change the actual flow for this reservation and renew it accordingly.

In the NSIS implementation we use, this process works as follows: The client application sends a preliminary RESERVE or QUERY message to the QoS-NSLP

over a client API. The QoS-NSLP transforms this request into a real RESERVE or QUERY message by assigning a SESSION-ID and turns it into a valid NSIS PDU. The message is then handed off to the *QoS-statemodule* that implements the *Finite State Machine (FSM)* described in the QoS-NSLP draft. The statemodule creates a context for the reservation, installs required state at the local node and hands the message off to the NTLP layer for delivery. Processing of incoming messages is also implemented inside the statemodule, as well as processing of GIST NetworkNotification messages. The statemodule is thus the natural point to perform any mobility transformations to the message as well as the hook point to process mobility events.

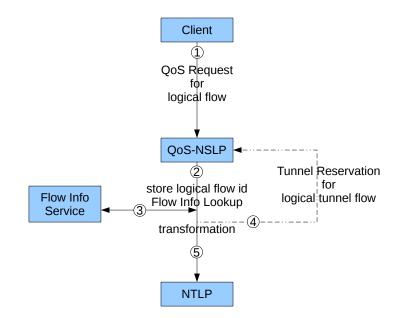


Figure 4.3: Mobility processing of initial QoS-client requests

Upon receiving the first RESERVE or QUERY message from the client API the statemodule queries the Flow Info Service to check if mobility processing is required. If this is the case, the logical flow information is stored in the created context and the message is modified for the actual flow. If tunnel mode is in effect a second RESERVE or QUERY message is generated for the tunnel flow and sent through the normal processing. The process is depicted in Figure 4.3. The message for the tunnel reservation is generated with the logical tunnel flow id—between the MN's HoA and the primary HA address—initially, and thus allows the same processing for the tunnel reservation as for a normal reservation. This approach simplifies the code a great deal as no special processing is required to react to mobility events for tunneled reservations. Instead the tunnel reservation is updated automatically by the mobility event for the logical tunnel flow.

The processing of mobility events is shown in Figure 4.4. Mobility events from the Flow Info Service are sent to the NTLP that then transforms the event into a NetworkNotification API call to the NSLPs. We introduce two new NetworkNotification types to convey mobility events: *Home Binding Update* and *Binding Update*. Both carry the MRI for logical flow. As with other NetworkNotification events, it is the job of the NSLP to figure out which, if any, of its active sessions are affected. The QoS-NSLP uses the stored logical flow id to lookup any such context. We had to add a new access structure to handle this lookup. Previously the QoS-NSLP was

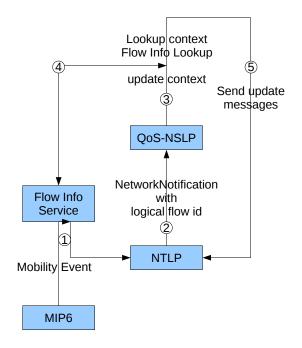
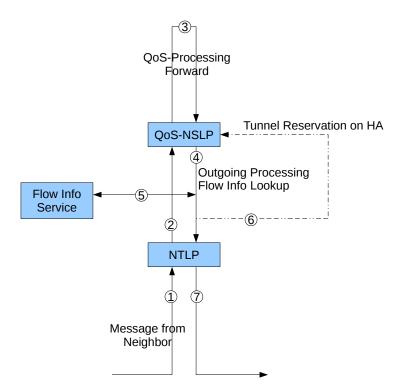



Figure 4.4: Processing of mobility events

only able to look up a context by its SESSION-ID as our NTLP always provided this information as well—in contrast to the definition in the GIST draft. This is no longer the case, as the NSLP has no means of informing the NTLP of the logical flow identification after the transformation has been applied and thus the NTLP can not look up the corresponding session. After identifying an affected context the QoS-NSLP queries the Flow Info Service for the new MIP6 state, compares it to the state of the reservation and—if required—sends messages to update the reservation accordingly.

As described in Chapter 3.3, the receiver of a reservation has limited possibilities to react if it receives a reservation for a logical flow for which the local Flow Info Service indicates a different actual flow. For the moment, our implementation simply assumes that the sender has the correct information and no mobility processing is applied for received messages. Even for the receiver-initiated case, the flow receiver depends on the flow sender to issue a new QUERY with the updated flow information. This again greatly simplifies the code as only the flow sender is aware of the logical flow and only it must react to mobility events. All other QoS nodes simply react to QoS-NSLP messages in the same way they react to ordinary, non-mobile messages.

The only changes to the normal processing of received messages concerns the handling of the old path after a new reservation has been established. In order to send a TEAR message on this path, the *Cross-Over-Nodes (CRN)* need to—in some situations—store the old flow MRI. Other than that, the normal re-routing processing readily provides the needed operations that are required after a re-routing caused by mobility. Even detecting the CRN can be done in the same way as detecting the branching or merging node after a normal re-routing event—by watching for changes of the SII-handle for the connected up- or downstream peer. It turned out that the provided code had some defects in this area as the draft documents have been in

flux about this in recent months. The required fixes for mobility, however, directly fixed the same issues for normal re-routing events.

Figure 4.5: Processing of incoming messages on the HA

The one exception to the rule that there is no special mobility processing required upon receiving a message, is the Home Agent, in the case where the CN is the flow sender and tunnel mode is in effect. The processing is shown in Figure 4.5. In this scenario the HA is the entry point for the tunnel and has to take care of the tunnel reservation. The required processing, however, can be done after the HA forwards the initial RESERVE or QUERY message. Because of the way the statemodule is currently implemented, every forwarded message goes through the same processing as a locally created message. This way the code to create a tunnel reservation from the HA or the MN is the same, hooked into the processing of outgoing messages.

4.3 Source Address Selection

As discussed in the Analysis (Chapter 3.4) we have to take special provisions in order to select the correct address when building Message Routing State from or to the Mobile Node. When MIP6 is in use a normal socket will always bind to the HoA in order to keep the mobility transparent to the application. If we want to use the CoA instead, we have to manually bind the socket to it after creation. In order to do so, we have to look up the current CoA first. This problem is solved with the advanced API described in RFC 5040 [11]. Unfortunately, the current implementation available for the Linux kernel is broken, so we had to introduce a local alternative. Our implementation receives the interface that carries the CoA as a configuration parameter and uses standard API calls to get the address(es) configured on that interface. After checking that the address is neither the HoA nor a link-local address we have a good guess for the CoA. This approach is limited in many ways, but good enough for our test environment. As long as no working RFC 5040 implementation is available, this is the only approach available. This lookup work-around is hidden behind a generic interface that will allow to replace it with a proper RFC 5040 API call once available.

We use the CoA, whenever we issue a GIST-Query or -Response, as the IP-source of the datagram as well as for the Interface Address in the Network Layer Information object that is used by the receiver of the message to build the Message Routing State or Messaging Association later on. Only if the Message Routing Information indicates that we really want to use the MRS/MA to signal from or to the HoA we use the HoA as source address directly. This makes sure that signaling messages for the tunneled flow enter the tunnel as they are supposed to. In addition, while the MN is at its home network there is not necessarily a CoA available so we have to build the MRS/MA from the HoA directly.

4.3.1 The Home Agent to Mobile Node GIST-Query Issue

For the issue described in Section 3.1.2 and depicted in Figure 3.3 where the GIST-Query from the HA to the MN does not enter the tunnel in some situations, we had to implement a local, environment specific solution. In order to avoid the resulting problems, we assign a secondary address to the Home Agent. This address is excluded from route optimization on every Mobile Node and used by the HA as the IP-source for GIST-Queries that are supposed to enter the tunnel. This requires additional configuration on the HA and MNs, but allows for a quick and efficient work around. Currently there is no other general approach known to tackle this issue otherwise.

5. Evaluation

To develop and evaluate the changes for mobility we are using an environment consisting of six virtual hosts connected to a "smart switch". This setup allows us to easily perform all possible mobility events. This chapter describes the setup in some detail and provides measurements of the signaling performance and delay.

5.1 The Testing Environment

Our testing environment consists of six virtual hosts: The Mobile Node, Home Agent and Correspondent Node as well as three Access Routers. The Home Agent and Access Routers are connected as shown in Figure 5.1 to build a topology that allows us to exercise various movement patterns. The Mobile Node moves between the Home Network and the three access networks, while the Correspondent Node is located in the access network provided by Access Router 1. Each Access Router as well as the Home Agent has installed static routes to the other routers and to the various networks provided by them. Each AR acts as default router in its network and sends fast (minimum delay as per RFC3775 [5], 0.03-0.07s) Router Advertisements—indicated by the circles in the figure. The MN and CN obtain an address in the network they are located in at the moment—indicated by the squares. In addition the MN has a HomeAddress in the Home Network that stays with it and is used for all reservations as logical source or destination. All virtual hosts run a slightly modified version of the Linux kernel with patches from the USAGI project in order to provide mobility functionality.

The topology is setup on a smart switch by bridging VLAN interfaces exported from the virtual environment. The smart switch runs the FreeBSD operating system and Wireshark to obtain packet capture dumps of the complete network traffic in the whole topology. This provides easy access to the complete signaling message exchange between the nodes and has proven to be a very powerful tool during initial prototyping and debugging. It also allows us to obtain accurate and easy measurements of the delay between a handover event and the resulting signaling exchange. In contrast to solutions where packet dumps are captured at each individual node, we do not have to correlate the individual dumps and need not account for clock

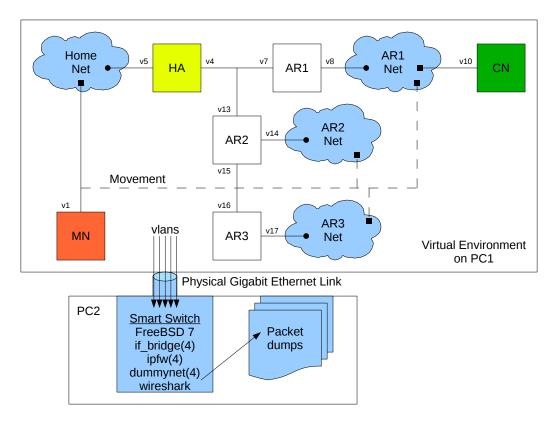


Figure 5.1: Test environment network layout

skew on the various nodes. As the smart switch is running on real hardware and all packets have to travel over a physical wire (twice), we are also not in danger of beneficial virtualization effects on the measurements and can assume that we obtain an upper bound for measurements performed on real hardware. We will, however, only be able to measure the time difference as observed on the smart switch. This is not a problem as the delay between the smart switch and the virtual nodes is well within the sub-microsecond range, while our measurements—as we will see later in the chapter—are up to four magnitudes larger.

5.2 Functional Evaluation

To evaluate if our implementation does perform the signaling as we have designed, we look at packet capture dumps from the smart switch and compare them with what we have drawn up before. The following figures are a visualization of the packet dump quoted—in full—in the appendix.

5.2.1 MN Sender, Sender-Initiated Reservation

The scenario we walk through in its entirety is the following: The MN is the flow sender creating a sender-initiated reservation from the HoA to the CN. Initially the MN is at its home network. The creation of the initial reservation is shown in Figure 5.2 (cf. Appendices A.1.1 and A.1.2 for the packet dump).

After a while the MN moves to AR3, obtains a new CoA, updates the mobility bindings with the HA and the CN and the reservation. This is shown in Figure 5.3 (cf. Appendix A.1.3-A.1.4). QoS-NSLP messages with the old MRI are drawn

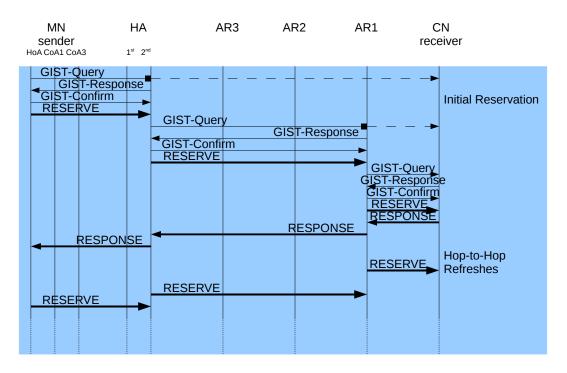


Figure 5.2: Initial Reservation Setup

dashed and marked with a "*" in the packet dump in the appendix. Note that the actual packet dump shows a short period of tunnel mode operation while the MN has not yet collected the tokens required to update the binding with the CN. As discussed before, we are not creating a reservation for the tunnel flow immediately and route-optimization is established quickly enough.

Figure 5.3 also illustrates our understanding of the signaling delay. We regard the time between receiving the *Binding Acknowledgement* (BA) from the CN and the final RESPONSE at the MN as the setup delay. Respectively, the time between receiving the BA at the MN and the RESERVE(TEAR) at the CRN is the tear down delay. This measurement points gives the time that is used by only the signaling application to negotiate. We purposely neglect the additional delay that is incurred by the MobileIPv6 signaling as well as the time the MIP6d needs to detect the new CoA. It is out of the scope of this work to optimize these times. It should be noted, however, that using the binding acknowledgement as trigger for the reservation update is a quite pessimistic approach. While this gives the earliest point in time when the new CoA can be used for route-optimized communication, there is room for optimization by taking a more optimistic approach. For instance, we could use sending of the binding update to the CN as the trigger, assuming that the CN will indeed acknowledge the binding. This way we would save a full round trip time. As our focus lies on constructing a functional prototype we leave these optimizations for further work in this area.

In the example dump we are looking at the following packets for the setup delay:

212	23.720472	1	CN(ar1)	MN(ar3)	MIPv6 Binding Acknowledgement
260	23.768795	1	AR3(ar3)	MN(ar3)	GIST Data, RESPONSE

We calculate a setup delay of under 50ms to update a reservation spanning five NSLP hops. During this test we did not add artificial delay (hop-to-hop round trip

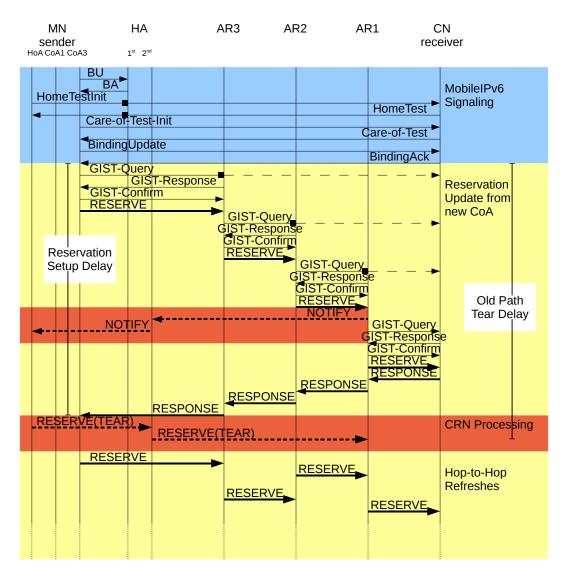


Figure 5.3: Handover to AR3 and Reservation Update

times are below 1ms) at the smart switch, so this number gives a good idea of the processing overhead alone. We should note that the times given by the packet dump are the times the respective packets are observed at the smart switch and not at the final destination, but since we are looking for time differences between two packets this does not matter. The time between the smart switch and the final destination can assumed to be uniform with the tiny absolute delay between smart switch and the virtual nodes as compared to the measured difference.

For the tear down delay we have a special case after leaving home. The MN can still communicate with the HA from the HoA and thusly issue an immediate tear. We measure roughly 52ms to tear a reservation spanning three NSLP hops:

212	23.720472	1	CN(ar1)	MN(ar3)	MIPv6 Binding Acknowledgement
268	23.772840	7	HA(inet)	AR1(inet)	GIST Data, RESERVE(TEAR)*

After some time settling at AR3 the MN moves to AR1 from where it can communicate with the CN directly. We choose this movement pattern to evaluate the longest and shortest reservation in terms of NSLP hops in our environment. The resulting exchange is shown in Figure 5.4 (cf. Appendix A.1.6).

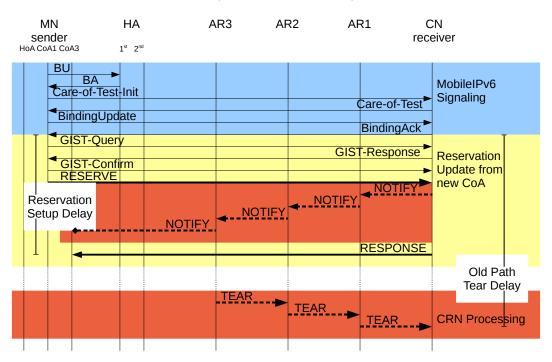


Figure 5.4: Handover to AR1 and Reservation Update

This time we observe the normal CRN processing in case of a sender-initiated reservation after movement of the flow sender. AR3 is trying to deliver the NOTIFY to the MN at the old CoA and fails. After some time during which refreshing RE-SERVEs are sent for the new and the old path at the same time (cf. Appendix A.1.7, not show in the figure), AR3 realizes that it is the dead-end and sends a TEAR down the old path (cf. Appendix A.1.8). The TEAR is forwarded all the way down to the CN which is also the CRN and stops forwarding of the TEAR from the old path silently.

Calculating the delays for this case we have to look at the following packets:

392	60.753212	1	CN(ar1)	MN(ar1)	MIPv6 Binding Acknowledgement
404	60.760651	1	CN(ar1)	MN(ar1)	GIST Data, RESPONSE
455	71.547837	10	AR1(ar1)	CN(ar1)	GIST Data, RESERVE(TEAR)*

We measure 7.4ms for the setup delay for a one hop reservation and almost 11s for the tear delay. The latter only depends on the lifetime of the routing state between the MN at the old CoA and AR3. The process could be sped up by requesting an acknowledgement at the QoS-NSLP level for the NOTIFY message. This way the QoS-NSLP at AR3 would realize much faster that the MN is no longer available and could free the resources on the old path much earlier. The QoS-NSLP draft includes a mechanism to request hop-to-hop acknowledgments so this is another optimization that my be tackled in future work.

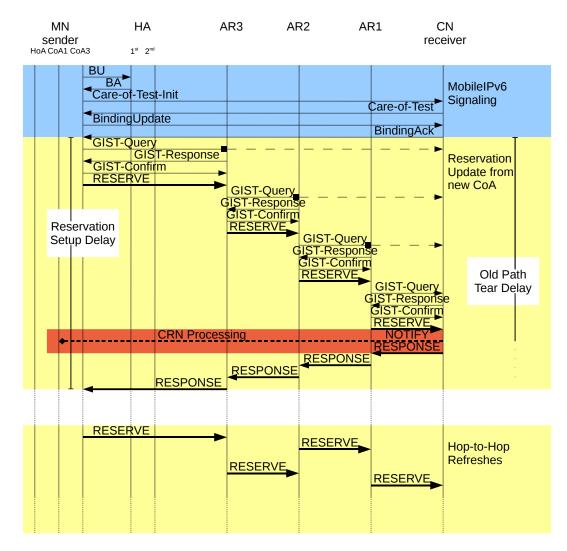


Figure 5.5: Handover AR1 back to AR3 and Reservation Update

Now we have a handover back to AR3. This is interesting in order to look at the CRN processing at the receiver (the CN in this scenario). As can be seen in Figure 5.5 (cf. Appendix A.1.10) the receiving node performs the normal CRN processing by sending a NOTIFY on the old path as soon as it receives the RESERVE from a new upstream node (change from MN to AR1). This NOTIFY message does not reach the MN as it is no longer available on CoA1. There is no further tear, as there

is in fact no old path left. The new reservation is otherwise updated and refreshed as normal.

Finally, in the packet dump shown in the appendix (A.1.13 through A.1.15) we have a handover back to the home network. There is nothing special about this except that the new CoA is the HoA and all nodes react appropriately. Please refer to the textual packet dump for details.

5.2.2 CN Sender, Sender-Initiated Reservation

Now we invert the direction of the flow. The CN becomes the flow sender and the MN the flow receiver, still using sender-initiated reservation. This is interesting because in this case a movement will result in a change of the downstream peer of the CRN allowing for a direct tear down of the old path. Figure 5.6 (cf. A.2) shows process of a handover for the MN moving from AR3 to AR1. This is an extract from the benchmark dump discussed in detail further down.

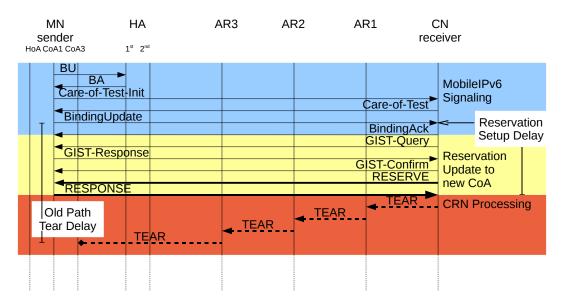


Figure 5.6: Handover AR1 back to AR3 and Reservation Update

As shown in the figure, the MIP6 update procedure works the same as before from the MN to the CN, but the reservation is done in the opposite direction. In order to obtain the same measurement points for the setup and tear down delay, we now use the time when the CN receives the binding update message as the start of the measured time. The CN is also a CRN—it sees a change in its downstream peer from AR1 to MN as it receives the GIST-Response. At that time, the CRN saves the old MRI (CN to CoA3) and sends a TEAR message down the old path as soon as the RESPONSE is processed and thus the new reservation is in place. The processing for a movement from AR1 to AR3 is very similar, only this time the TEAR message is sent to the MN at CoA1 directly (where it is no longer available).

To calculate the delay we have to look at the following packets:

12	0.009932	10	MN(ar1)	CN(ar1)	MIPv6 Binding Update
25	0.020173	1	MN(ar1)	CN(ar1)	GIST Data, RESPONSE
32	0.025687	16	AR2(inet2)	AR3(inet2)	GIST Data, RESERVE(TEAR)*

We measure 10ms for the setup over two NSLP hops and 16ms for the tear down over four hops.

5.2.3 Receiver-Initiated Reservations

The receiver-initiated case is not that much different compared to the sender-initiated case, only that the first message after the GIST handshake is a QUERY instead of a RESERVE. Unfortunately, this causes severe confusion in the SII-handle change processing and thus in the CRN detection and processing. We were not able to make CRN processing work on the flow sender or receiver without profoundly reworking the complete handling of receiver-initiated reservations as a whole. It was decided to accept the missing tear-down of the old path in this case. In cases where the CRN is a QNE (and not QNI/QNR) the CRN processing is working as expected.

5.3 Signaling Performance Benchmarks

We evaluate the signaling performance based on the time between receiving the BA/BU on the MN/CN respectively and the time when the final RESPONSE for the new reservation is received. These are the same numbers that are mentioned in the functional evaluation above.

We sample this time over 50 consecutive movements of the MN between AR3 to AR2 to AR1 and back. The resulting reservations span either a single hop (MN to CN), four (MN, AR2, AR1, CN) or five hops (MN, AR3, AR2, AR1, CN). We also measure the time it takes before the old path is properly torn down. This is only measured for the old path between AR2 and AR3 after a movement from AR3 to AR2 as there is not necessarily a tear down for the short path.

The following Table gives the median¹ over the 50 runs². Figure 5.7 provides a visual representation of these numbers.

Testcase	AR1 setup	AR2 setup	AR3 setup	tear
MN sender, sender-initiated	11.8ms	$26.9 \mathrm{ms}$	$37.5 \mathrm{ms}$	20.6s
CN sender, sender-initiated	13.3ms	$27.4 \mathrm{ms}$	$40.3 \mathrm{ms}$	$26.8 \mathrm{ms}$
MN sender, receiver-initiated	11.3ms	$29.0 \mathrm{ms}$	$43.1 \mathrm{ms}$	$28.0\mathrm{ms}$
CN sender, receiver-initiated	12.5ms	$33.4\mathrm{ms}$	42.2ms	31.9ms

Table 5.1: Reservation Setup and Old Path Tear Delay After Movement

Again these tests have been performed without adding artificial delay at the smart switch and a resulting round trip time between the virtual hosts of under 1ms. During these tests we identified the problem in our implementation regarding the CRN operation on the flow sender or receiver in receiver-initiated mode. Due to problems with the current state of the SII-handle change processing—already mentioned at the end of Section 4.2—we were unable to fix this particular problem. As a result we do not issue explicit tear down messages on the old path in these scenarios. The

 $^{^{1}}$ We prefer the median over the arithmetic average to be more resilient to outliers

²Please refer to Appendix B for the raw numbers

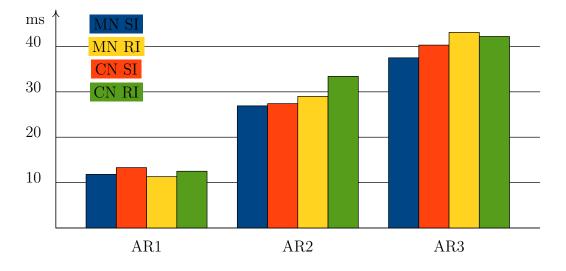


Figure 5.7: Setup Delay for Different Hop-Counts and Modes

impact of this is limited, however, as the old path will time out eventually. As mentioned earlier, this is not a problem when the CRN is a QNE.

The fact that there is little to no difference between the sender- and receiver-initiated case while at AR1 is also due to the missing CRN processing on the receiver. The additional overhead and half round trip for the QUERY seems to be roughly the same as the overhead to generate the NOTIFY or RESERVE(TEAR) message that is sent before the RESPONSE in sender-initiated mode.

The relative high number for the tear down delay when the MN is the flow sender and QNI is again due to the way the CRN processing works. As discussed in during the example above, the process could be sped up using hop-to-hop acknowledgments for the NOTIFY message at the QoS-NSLP level.

Now we introduce additional delay on the smart switch to see how much of the processing overhead can be amortized in typical Internet scenarios. We configured 50ms symmetric delay between AR1 and AR2 and another 25ms between AR2 and AR3. The access networks remain unchanged. We use the IPFW2 packet filter and dummynet[12] to simulate these link properties. With these settings we measure 104ms round trip time between the MN and the CN while the MN is at the access network of AR2, and 160ms while at AR3. The slight difference from the configured values (100ms/150ms respectively) is due to scheduling granularity and additional overhead for the queueing on the smart host. The numbers were obtained using the ping6(8) utility with 600 samples over a one minute interval, reporting a standard deviation of under 2ms in both cases.

These numbers allow us to project the theoretical, optimal delay for the reservation setup. For sender-initiated reservations we count: GIST-Query and GIST-Response (one round trip), GIST-Confirm/RESERVE and RESPONSE (one round trip): Two round trips total. In sender-initiated mode there is an additional half round trip for the QUERY i.e. two and a half round trips total:

Our measurements in face of the delay give the following numbers, this time over 50 movements between AR2 and AR3—again the median is given:

Testcase	AR2 optimal delay	AR3 optimal delay
sender-initiated receiver-initiated	208ms (2RTT) 260ms (2.5RTT)	$ \begin{array}{c c} 320ms (2RTT) \\ 400ms (2.5RTT) \end{array} $

Table 5.2: Theoretical Optimal Reservation Setup Delay

Testcase	AR2 setup delay	AR3 setup delay
MN sender, sender-initiated	228.8ms	348.9ms
CN sender, sender-initiated	$231.5 \mathrm{ms}$	$353.1\mathrm{ms}$
MN sender, receiver-initiated	$285.5\mathrm{ms}$	$429.3 \mathrm{ms}$
CN sender, receiver-initiated	287.8ms	429.1ms

Table 5.3: Measured Reservation Setup Delay

Or in terms of overhead compared to the theoretical, optimal performance see Table 5.4.

Testcase	AR2 setup overhead	AR3 setup overhead
MN sender, sender-initiated	20.8ms	28.9ms
CN sender, sender-initiated	$23.5\mathrm{ms}$	$33.1\mathrm{ms}$
MN sender, receiver-initiated	$25.5\mathrm{ms}$	$29.3 \mathrm{ms}$
CN sender, receiver-initiated	27.8ms	29.1ms

Table 5.4: Difference Between Measurements and Theoretic Optimum

Figure 5.8 visualizes the difference between the optimal and measured setup delay.

These numbers are slightly better than what we obtained without delay (cf. Table 5.1) where we did not attempt to remove the 1-2ms round trip times. The fact that they are otherwise very similar suggests that these numbers are non-dependent on the hop-to-hop delay and represent the static processing overhead.

Finally we look at the time it takes to process the mobility trigger event by measuring the time between the BindingUpdate/BindingAcknowledgement and GIST-Query that starts the signaling process. The following numbers are collected over all movement events from all benchmarks performed. There is no difference between sender- or receiver-initiated mode for these numbers.

Testcase	Mobility trigger delay
MN	1.93ms
CN	$2.54\mathrm{ms}$

	Table 5.5 :	Mobility	Trigger	Processing	Overhead
--	---------------	----------	---------	------------	----------

The absolute time is very small and—as we are only looking at externally observable events—includes not only the trigger event processing itself, but also the generation

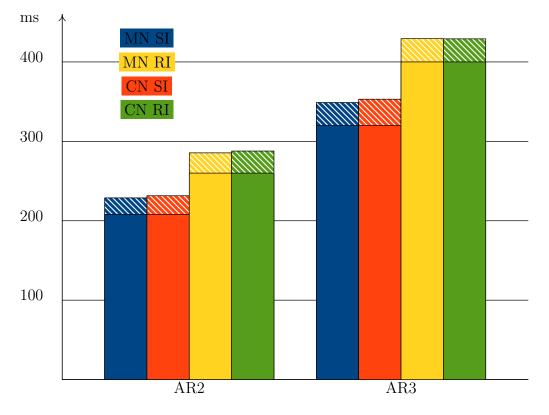


Figure 5.8: Setup Delay and Overhead

of the Query message that has to be done regardless. The slightly longer delay on the CN is due to the fact that the MIP6d has to prepare and send the BindingAcknowledgement message before it issues the trigger.

5.4 Summary

We ran an extensive testsuite to verify other test cases such as the switch from tunnel mode to route-optimization and vice versa, leaving and returning home as well as different CRN scenarios. With the exception of the aforementioned issue with CRN processing in receiver-initiated mode all these tests were successfull. The signaling performance numbers from the previous section show that even our proofof-concept implementation is able to provide sensible performance and that the suggested interface with the mobility management does not pose a bottleneck.

6. Summary and further directions

In this work we were able to show that the NSIS protocol drafts for the QoS-NSLP and GIST are well-equipped to deal with mobility. No changes at protocol level were required to implement functional mobility support. The only change from the drafts is the introduction of a new type for the NetworkNotification-API call to propagate mobility events from GIST to NSLPs. Most other issues identified during this work revolve around implementation problems and can only be solved with regard to the specific implementation environment. We also identified one serious issue in relation to tunnel mode (see Section 3.1.2 for details). There is currently no satisfying solution to this problem available. We introduce a possible work-around in Section 4.3.1 that resolves the problem at the cost of additional configuration and administrative overhead. The mobility-draft [13] gives a good overview of the general problem of signaling in mobile environments, but—in our opinion—does not give sufficient detail in some areas where implementation issues are concerned. It would help if some of the points presented in the early draft [16] where reiterated in the current document—especially the discussion of different flow identifiers.

Our implementation currently serves as a proof-of-concept and there are a number of possible optimizations for further work in this area: A more optimistic trigger point could be used for the mobility events. Instead of using full message routing state setup, the QoS-NSLP data could be transported in the GIST-Query. Experiments with Message Associations should be conducted, too. Tear-down of the old path can be sped up. In addition, as our work is only concerned with inter-domain handovers, there are a number of possible optimizations when looking at intra-domain handovers, too.

We were able to provide a fully mobility-aware QoS-Signaling Application with relatively little changes to a pre-existing, not-mobility-aware implementation, showing that the work in the NSIS working group was indeed conducted with mobility in mind.

A. Evaluation Packet Dumps

A.1 MN Sender in Sender-Initiated Mode

The following packet dump shows the complete packet exchange for a sender-initiated reservation in the topology described in Chapter 5.1 and shown in Figure 5.1. The VLAN numbers quoted below are also shown in that figure. The dump is split up into logical parts as described in Chapter 5.2. Source and destination addresses are replaced with symbolic names of the node and network they belong to. The "inet"-network refers to the network that connects the HA, AR1 and AR2. "inet2" is the interconnect between AR2 and AR3. As described earlier we had to assign two addresses to the HA in order to avoid problems with the creation of tunneled routing state from the HA to the MN. The primary address is "HA(home:1)". "HA(home:2)" is the address used to establish routing state. The MN's HoA is "MN(home)".

A.1.1 Initial Reservation

No.	Time	VLAN	Source	Destination	Protocol	Info
1	0.000000	1	MN(home)	CN(ar1)	GIST	Query
	Message rout	ting ir	nformation ob	ject		-
	Object H	Header				
	MRI type	e: 0				
	Flags: (00x0				
	IP vers:	ion: 6				
	Flags: () 008xC	(P)			
	Source a	address	s: MN(home)			
	Destinat	tion ad	ldress: CN(ar	1)		
	Source a	address	s prefix: O			
	Destinat	tion ad	ldress prefix	: 0		
	Protocol	l: UDP	(0x11)			
2	0.000007	5	MN(home)	CN(ar1)	GIST	Query
3	0.003753	5	HA(home:2)	MN(home)	GIST	Response
4	0.003757	1	HA(home:2)	MN(home)	GIST	Response
5	0.009123	1	MN(home)	HA(home:2)	GIST	Confirm
6	0.009127	5	MN(home)	HA(home:2)	GIST	Confirm
7	0.009130	1	MN(home)	HA(home:2)	GIST	Data, RESERVE
8	0.009134	5	MN(home)	HA(home:2)	GIST	Data, RESERVE
9	0.013703	4	HA(inet)	CN(ar1)	GIST	Query

10	0.013712	7	HA(inet)	CN(ar1)	GIST Query
11	0.017781	7	AR1(inet)	HA(inet)	GIST Response
12	0.017790	4	AR1(inet)	HA(inet)	GIST Response
13	0.022205	4	HA(inet)	AR1(inet)	GIST Confirm
14	0.022210	7	HA(inet)	AR1(inet)	GIST Confirm
15	0.023403	4	HA(inet)	AR1(inet)	GIST Data, RESERVE
16	0.023408	7	HA(inet)	AR1(inet)	GIST Data, RESERVE
17	0.029141	8	AR1(ar1)	CN(ar1)	GIST Query
18	0.029149	10	AR1(ar1)	CN(ar1)	GIST Query
19	0.041884	10	CN(ar1)	AR1(ar1)	GIST Response
20	0.041888	8	CN(ar1)	AR1(ar1)	GIST Response
21	0.042912	8	AR1(ar1)	CN(ar1)	GIST Confirm
22	0.042917	10	AR1(ar1)	CN(ar1)	GIST Confirm
23	0.043415	8	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
24	0.043420	10	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
25	0.047139	10	CN(ar1)	AR1(ar1)	GIST Data, RESPONSE
26	0.047144	8	CN(ar1)	AR1(ar1)	GIST Data, RESPONSE
27	0.048494	7	AR1(inet)	HA(inet)	GIST Data, RESPONSE
28	0.048500	4	AR1(inet)	HA(inet)	GIST Data, RESPONSE
29	0.050877	5	HA(home:2)	MN(home)	GIST Data, RESPONSE
30	0.050884	1	HA(home:2)	MN(home)	GIST Data, RESPONSE

A.1.2 Hop-to-Hop Refreshes

31	4.854890	1	MN(home)	HA(home:2)	GIST Data, RESERVE
32	4.854898	5	MN(home)	HA(home:2)	GIST Data, RESERVE
33	4.916383	4	HA(inet)	AR1(inet)	GIST Data, RESERVE
34	4.916416	+ 7	HA(inet)	AR1(inet)	GIST Data, RESERVE
34 35	6.499409	8	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
36	6.499409	10	ARI(arl) AR1(arl)	CN(ar1) CN(ar1)	GIST Data, RESERVE
30 37	8.500395	10			•
		-	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
38	8.500405	10	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
39	9.854521	1	MN(home)	HA(home:2)	GIST Data, RESERVE
40	9.854530	5	MN(home)	HA(home:2)	GIST Data, RESERVE
41	9.918490	4	HA(inet)	AR1(inet)	GIST Data, RESERVE
42	9.918501	7	HA(inet)	AR1(inet)	GIST Data, RESERVE
43	11.500673	8	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
44	11.500682	10	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
45	13.855628	1	MN(home)	HA(home:2)	GIST Data, RESERVE
46	13.855636	5	MN(home)	HA(home:2)	GIST Data, RESERVE
47	14.530320	8	AR1(ar1)	CN(ar1)	GIST Query
48	14.530330	10	AR1(ar1)	CN(ar1)	GIST Query
49	14.531332	10	CN(ar1)	AR1(ar1)	GIST Response
50	14.531338	8	CN(ar1)	AR1(ar1)	GIST Response
51	14.532047	8	AR1(ar1)	CN(ar1)	GIST Confirm
52	14.532051	10	AR1(ar1)	CN(ar1)	GIST Confirm
53	14.919215	4	HA(inet)	AR1(inet)	GIST Data, RESERVE
54	14.919225	7	HA(inet)	AR1(inet)	GIST Data, RESERVE
55	15.500903	8	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
56	15.500912	10	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
57	17.918821	4	HA(inet)	AR1(inet)	GIST Data, RESERVE
58	17.918828	7	HA(inet)	AR1(inet)	GIST Data, RESERVE
59	18.501543	8	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
60	18.501548	10	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
••			(1 /		

A.1.3 Handover to AR3 - Tunnel Mode

61	18.621585	1	MN(ar3)	HA(home:1)	MIPv6 Binding Update
62	18.621590	17	MN(ar3)	HA(home:1)	MIPv6 Binding Update

63 84.621809 16 MM(ar3) HA(home:1) MIPv6 Binding Update 64 18.622065 13 MM(ar3) HA(home:1) MIPv6 Binding Update 66 18.622065 13 MM(ar3) HA(home:1) MIPv6 Binding Update 67 18.710294 1 MM(home) CM(ar1) GIST Query 68 18.710599 16 MM(home) CM(ar1) GIST Query 70 18.710584 15 MM(home) CM(ar1) GIST Query 71 18.71070 1 MM(home) CM(ar1) MIPv6 Home Test Init 74 18.711704 17 MM(home) CM(ar1) MIPv6 Home Test Init 76 18.711891 13 MM(home) CM(ar1) MIPv6 Gare-of Test Init 76 18.711991 1 MM(ar3) CM(ar1) MIPv6 Gare-of Test Init 77 18.71258 16 MM(ar3) CM(ar1) MIPv6 Gare-of Test Init 78 18.712625 13 MM(home) CM(ar1) MI	60	10 001000	10	MN (2)		MTDC	Dialian III lata
65 18.622065 13 MM(ar3) HA(home:1) MTPvB Binding Update 67 18.710294 1 MM(home) CM(ar1) GIST Query 68 18.710301 17 MM(home) CM(ar1) GIST Query 70 18.710584 15 MM(home) CM(ar1) GIST Query 71 18.710584 15 MM(home) CM(ar1) GIST Query 71 18.71070 1 MM(home) CM(ar1) GIST Query 73 18.711704 17 MM(home) CM(ar1) MIPv6 Home Test Init 75 18.711704 17 MM(home) CM(ar1) MIPv6 Home Test Init 76 18.711879 16 MM(home) CM(ar1) MIPv6 Gare-of Test Init 76 18.71218 16 MM(ar3) CM(ar1) MIPv6 Gare-of Test Init 78 18.712428 13 MM(home) CM(ar1) MIPv6 Home Test Init 81 18.712428 13 MM(ar3) CM(ar1) MIPv6 Home Test Init 81 18.712428 13 MM(home) CM(ar1) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></td<>							0
66 81.622071 4 M(Aca3) HA(home: CN(ar1) GIST Query 68 18.710501 17 M(home) CN(ar1) GIST Query 68 18.710579 16 M(home) CN(ar1) GIST Query 71 18.710579 16 M(home) CN(ar1) GIST Query 71 18.71070 1 M(home) CN(ar1) GIST Query 73 18.711700 1 M(home) CN(ar1) MIPv6 Home Test Init 74 18.711879 16 M(home) CN(ar1) MIPv6 Home Test Init 76 18.711879 17 M(home) CN(ar1) MIPv6 Home Test Init 76 18.711248 14 M(ar3) CN(ar1) MIPv6 Gare-of Test Init 78 18.712428 4 M(home) CN(ar1) MIPv6 Home Test Init 81 18.712428 13 M(ar3) CN(ar1) MIPv6 Home Test Init 81 18.712428 4 M(home) CN(ar1) MIPv6 Gare-of Test Init							
67 18.710294 1 NN(home) CN(arl) GIST Query 68 18.710579 16 NN(home) CN(arl) GIST Query 70 18.710584 15 NN(home) CN(arl) GIST Query 71 18.710584 15 NN(home) CN(arl) GIST Query 71 18.71070 1 NN(home) CN(arl) GIST Query 71 18.711704 1 NN(home) CN(arl) MIPv6 Home Test Init 75 18.711883 15 NN(home) CN(arl) MIPv6 Home Test Init 76 18.711883 15 NN(home) CN(arl) MIPv6 Home Test Init 77 18.711994 1 NN(ara) CN(arl) MIPv6 Gare-of Test Init 78 18.71248 4 NN(home) CN(arl) MIPv6 Home Test Init 81 18.71248 1 NN(home) CN(arl) MIPv6 Gare-of Test Init 81 18.71248 4 NN(ara) CN(arl) MIPv6 Gare-of Test Init 81 81.714247 8 CN(arl) MIPv6 Gare-of Test Init							
68 18.710301 17 FM(home) CN(arl) GIST Query 69 18.710579 16 MN(home) CN(arl) GIST Query 71 18.710574 15 MN(home) CN(arl) GIST Query 71 18.710503 4 MN(home) CN(arl) GIST Query 73 18.711700 1 MN(home) CN(arl) MTPv6 Home Test Init 74 18.711701 1 MN(home) CN(arl) MTPv6 Home Test Init 75 18.711879 16 MN(home) CN(arl) MTPv6 Home Test Init 76 18.712181 16 MN(ara3) CN(arl) MTPv6 Home Test Init 78 18.712428 4 MN(home) CN(arl) MTPv6 Home Test Init 81 18.712428 4 MN(home) CN(arl) MTPv6 Home Test Init 81 18.712428 4 MN(home) CN(arl) MTPv6 Gare-of Test Init 81 18.712428 4 MN(home) CN(arl) MTPv6 Gare-of Test							
69 18.710579 16 MN(home) CN(arl) GIST Query 70 18.710584 15 MN(home) CN(arl) GIST Query 72 18.710983 4 MN(home) CN(arl) GIST Query 73 18.711700 1 MN(home) CN(arl) MIPv6 Home Test Init 74 18.711704 1 MN(home) CN(arl) MIPv6 Home Test Init 75 18.711893 15 MN(home) CN(arl) MIPv6 Home Test Init 76 18.711894 17 MN(ard) CN(arl) MIPv6 Home Test Init 78 18.711242 16 MN(ard) CN(arl) MIPv6 Home Test Init 79 18.712425 13 MN(nome) CN(arl) MIPv6 Home Test Init 74 18.712425 13 MN(ard) CN(arl) MIPv6 Gare-of Test Init 74 18.712424 4 MN(ard) CN(arl) MIPv6 Gare-of Test <init< td=""> 75 18.713645 7 MN(ard) CN(arl) MIPv6 Gare-of</init<>							-
70 18.710584 15 MN(home) CN(arl) GIST Query 71 18.711070 13 MN(home) CN(arl) GIST Query 73 18.711704 17 MN(home) CN(arl) GIST Query 73 18.711704 17 MN(home) CN(arl) MIPv6 Home Test Init 74 18.711879 16 MN(home) CN(arl) MIPv6 Home Test Init 75 18.711991 1 MN(ar3) CN(arl) MIPv6 Gare-of Test Init 76 18.711994 17 MN(ar3) CN(arl) MIPv6 Gare-of Test Init 76 18.711245 13 MN(home) CN(arl) MIPv6 Gare-of Test Init 83 18.712425 13 MN(ar3) CN(arl) MIPv6 Gare-of Test Init 84 18.712536 7 MN(ar3) CN(arl) MIPv6 Gare-of Test Init 85 18.714244 10 CN(arl) MIPv6 Gare-of Test Init 16 86 18.714247 8 CN(arl) MIPv6 Gare-of Test Init 17 87 18.714244 10 CN(arl) MIP							
71 18.710977 13 MN(home) CN(ar1) GIST Query 72 18.710983 4 MN(home) CN(ar1) MIPv6 Home Test Init 73 18.711704 1 MN(home) CN(ar1) MIPv6 Home Test Init 74 18.711704 17 MN(home) CN(ar1) MIPv6 Home Test Init 75 18.711883 15 MN(home) CN(ar1) MIPv6 Care-of Test Init 77 18.711994 1 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 78 18.712161 15 MN(home) CN(ar1) MIPv6 Care-of Test Init 81 18.712425 13 MN(home) CN(ar1) MIPv6 Care-of Test Init 81 18.712536 13 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 81 18.712536 7 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 81 18.712644 10 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 81 18.712645 8 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 81 18.7126							-
72 18.710983 4 MN(home) CN(ar1) MIPv6 Home Test Init 73 18.711704 17 MN(home) CN(ar1) MIPv6 Home Test Init 75 18.711879 16 MN(home) CN(ar1) MIPv6 Home Test Init 76 18.711830 15 MN(home) CN(ar1) MIPv6 Home Test Init 77 18.711994 1 MM(ar3) CN(ar1) MIPv6 Care-of Test Init 77 18.711994 17 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 78 18.71245 13 MN(home) CN(ar1) MIPv6 Home Test Init 81 18.71245 13 MN(ar3) CN(ar1) MIPv6 Gare-of Test Init 81 18.71258 7 MM(ar3) CN(ar1) MIPv6 Gare-of Test Init 81 18.71258 7 MN(ar3) CN(ar1) MIPv6 Gare-of Test Init 81 18.71244 10 CN(ar1) MIPv6 Care-of Test Init 81 18.714244 10 CN(ar1) MIPv6 Care-of Test Init 81 18.714840 16 CN(ar1) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td>							•
73 18.711700 1 NN(home) CN(ar1) MIPv6 Home Test Init 74 18.711879 16 NN(home) CN(ar1) MIPv6 Home Test Init 75 18.711879 16 NN(home) CN(ar1) MIPv6 Home Test Init 76 18.711891 1 MN(ar3) CN(ar1) MIPv6 Gare-of Test Init 78 18.711991 1 MN(ar3) CN(ar1) MIPv6 Gare-of Test Init 78 18.712425 13 MN(home) CN(ar1) MIPv6 Gare-of Test Init 81 18.712428 4 MN(nome) CN(ar1) MIPv6 Gare-of Test Init 81 18.71255 13 MN(ar3) CN(ar1) MIPv6 Gare-of Test Init 81 18.71254 10 MN(ar3) CN(ar1) MIPv6 Gare-of Test Init 81 81.716461 10 MN(ar3) CN(ar1) MIPv6 Gare-of Test 81 81.716461 10 MN(ar3) MIPv6 Gare-of Test 111 81 81.716441 13 CN(ar1) MN(ar3) MIPv6 Gare-of Test 81 81.716484 16 CN(
74 18.711704 17 Mi(home) CN(ar1) MIPv6 Home Test Init 75 18.711879 16 Mi(home) CN(ar1) MIPv6 Home Test Init 77 18.711991 1 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 77 18.711994 17 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 78 18.712168 16 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 81 18.712425 13 MN(home) CN(ar1) MIPv6 Home Test Init 81 18.712425 13 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 83 18.712535 13 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 84 18.712545 13 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 85 18.715446 10 CN(ar1) MIPv6 Care-of Test Init 16 87 18.715494 13 CN(ar1) MIPv6 Care-of Test 16 88 18.715494 10 CN(ar1) MIPv6 Care-of Test 17 91 18.715491 3 CN(ar1)							•
75 18.711879 16 MN(home) CN(ar1) MIPv6 Home Test Init 76 18.711893 15 MN(home) CN(ar1) MIPv6 Care-of Test Init 78 18.711994 17 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 79 18.712163 16 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 81.712161 15 MN(home) CN(ar1) MIPv6 Home Test Init 82 18.712225 13 MN(home) CN(ar1) MIPv6 Home Test Init 83 18.712235 13 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 84 18.712536 7 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 85 18.713661 10 MN(ar3) CN(ar1) MIPv6 Care-of Test 81 18.714244 10 CN(ar1) MIPv6 Care-of Test 101 81 18.714244 10 CN(ar1) MIPv6 Care-of Test 101 91 18.715484 15 CN(ar1) MIPv6 Care-of Test 101 91 18.716441 10 CN(ar1) MN(ar3)							
76 18.711883 15 MN(home) CN(arl) MIPv6 Care-of Test Init 77 18.711994 1 MN(ar3) CN(arl) MIPv6 Care-of Test Init 78 18.712158 16 MN(ar3) CN(arl) MIPv6 Care-of Test Init 80 18.712425 13 MN(home) CN(arl) MIPv6 Home Test Init 81 18.712425 13 MN(home) CN(arl) MIPv6 Care-of Test Init 83 18.712425 13 MN(home) CN(arl) MIPv6 Care-of Test Init 84 18.712535 13 MN(ar3) CN(arl) MIPv6 Care-of Test Init 85 18.713657 8 MN(ar3) CN(arl) MIPv6 Care-of Test Init 86 18.714244 10 CN(arl) MN(ar3) MIPv6 Care-of Test 81 18.714244 10 CN(arl) MN(ar3) MIPv6 Care-of Test 91 18.715486 7 CN(arl) MN(ar3) MIPv6 Care-of Test 91 18.715491 13 CN(arl) MN(ar3) MIPv6 Care-of Test 92 18.715634 15							
18.711991 1 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 78 18.711994 17 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 80 18.712163 16 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 81 18.712425 13 MN(home) CN(ar1) MIPv6 Home Test Init 81 18.712428 4 MN(home) CN(ar1) MIPv6 Care-of Test Init 83 18.712535 7 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 84 18.712636 7 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 85 18.713661 10 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 87 18.714244 10 CN(ar1) MN(ar3) MIPv6 Care-of Test Init 89 18.715491 13 CN(ar1) MN(ar3) MIPv6 Care-of Test Init 91 18.715491 13 CN(ar1) MN(ar3) MIPv6 Care-of Test Init 91 18.715491 13 CN(ar1) MN(ar3) MIPv6 Care-of Test Init							
78 18.711994 17 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 79 18.712161 15 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 80 18.712425 13 MN(home) CN(ar1) MIPv6 Care-of Test Init 81 18.712428 4 MN(home) CN(ar1) MIPv6 Care-of Test Init 82 18.712535 13 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 84 18.712657 8 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 85 18.713661 10 MN(ar3) CN(ar1) MIPv6 Care-of Test 86 18.714247 8 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.715486 7 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.715491 13 CN(ar1) MN(ar3) MIPv6 Care-of Test 92 18.71540 16 CN(ar1) MN(ar3) MIPv6 Care-of Test 92 18.71540 16 CN(ar1) MN(ar3) MIPv6 Care-of Test 93 18.716047 17 CN(ar1)<							
79 18.712158 16 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 80 18.712425 13 MN(home) CN(ar1) MIPv6 Home Test Init 81 18.712425 13 MN(home) CN(ar1) MIPv6 Home Test Init 82 18.712438 4 MN(home) CN(ar1) MIPv6 Care-of Test Init 84 18.712538 7 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 85 18.713657 8 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 86 18.713641 10 CN(ar1) MIPv6 Care-of Test Init 87 18.714244 10 CN(ar1) MN(ar3) MIPv6 Care-of Test 81 18.714244 13 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.716461 1 CN(ar1) MN(ar3) MIPv6 Care-of Test 92 18.71647 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 93 18.716047 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 94 18.716047 17 CN(ar1)		18.711991					
80 18.712161 15 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 81 18.712425 13 MN(home) CN(ar1) MIPv6 Home Test Init 82 18.712428 4 MN(home) CN(ar1) MIPv6 Home Test Init 83 18.712428 13 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 84 18.712638 7 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 85 18.713667 8 MN(ar3) CN(ar1) MIPv6 Care-of Test 87 18.714244 10 CN(ar1) MN(ar3) MIPv6 Care-of Test 90 18.715849 13 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.715840 16 CN(ar1) MN(ar3) MIPv6 Care-of Test 92 18.716047 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 93 18.716051 1 CN(ar1) MN(ar3) ICMv6 Unreachable (Port unreachable) 94 18.716051 1 CN(ar1) MN(ar	78	18.711994		MN(ar3)			
81 18.712425 13 MN(home) CN(ar1) MIPv6 Home Test Init 82 18.712428 4 MN(home) CN(ar1) MIPv6 Home Test Init 83 18.712535 13 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 84 18.712538 7 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 85 18.713661 10 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 86 18.714244 10 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.715486 7 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.715484 15 CN(ar1) MN(ar3) MIPv6 Care-of Test 92 18.716847 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 93 18.716047 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 94 18.831602 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 95 18.831495 4 HA(home:1) <	79	18.712158		MN(ar3)	CN(ar1)	MIPv6	Care-of Test Init
82 18.712428 4 MN(nome) CN(ar1) MIPv6 Home Test Init 83 18.712538 7 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 84 18.712538 7 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 85 18.713657 8 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 86 18.713661 10 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 87 18.714244 10 CN(ar1) MN(ar3) MIPv6 Care-of Test 90 18.715486 7 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.715834 15 CN(ar1) MN(ar3) MIPv6 Care-of Test 92 18.716840 16 CN(ar1) MN(ar3) MIPv6 Care-of Test 93 18.716047 17 CN(ar1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 94 18.716051 1 CN(ar1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 95 18.831495 4 HA(home:1)	80	18.712161	15	MN(ar3)	CN(ar1)	MIPv6	Care-of Test Init
83 18.712535 13 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 84 18.712538 7 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 85 18.713657 8 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 86 18.713657 8 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 87 18.714247 8 CN(ar1) MN(ar3) MIPv6 Care-of Test 89 18.715486 7 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.715834 15 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.716847 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 92 18.716047 17 CN(ar1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 91 18.716051 1 CN(ar1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 94 18.831602 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 95 18.831606 13	81	18.712425	13	MN(home)	CN(ar1)	MIPv6	Home Test Init
84 18.712538 7 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 85 18.713657 8 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 86 18.713661 10 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 87 18.714244 10 CN(ar1) MN(ar3) MIPv6 Care-of Test 88 18.714244 8 CN(ar1) MN(ar3) MIPv6 Care-of Test 90 18.715491 13 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.715491 16 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.716047 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 92 18.716047 17 CN(ar1) MN(ar3) ICMv6 Uareachable (Port unreachable) 93 18.716047 17 CN(ar1) MN(ar3) ICMv6 Unreachable (Port unreachable) 94 18.81602 13 HA(home:1) MN(ar3) ICMv6 Unreachable (Port unreachable) 95 18.831602 14	82	18.712428	4	MN(home)	CN(ar1)	MIPv6	Home Test Init
85 18.713657 8 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 86 18.713661 10 MN(ar3) CN(ar1) MIPv6 Care-of Test Init 87 18.714244 10 CN(ar1) MN(ar3) MIPv6 Care-of Test 88 18.714247 8 CN(ar1) MN(ar3) MIPv6 Care-of Test 90 18.715846 7 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.715834 16 CN(ar1) MN(ar3) MIPv6 Care-of Test 92 18.716047 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 93 18.716047 17 CN(ar1) MN(ar3) ICMv6 Uareachable (Port unreachable) 94 18.716051 1 CN(ar1) MN(ar3) ICMv6 Uareachable (Port unreachable) 95 18.831495 4 HA(home:1) MN(ar3) ICMv6 Uareachable (Port unreachable) 96 18.831606 13 HA(home:1) MN(ar3) ICMv6 Uareachable (Port unreachable) 97 18.832050 15 HA(home:1) MN(ar3) ICMv6 Uareachable (Port unreachable)	83	18.712535	13	MN(ar3)	CN(ar1)	MIPv6	Care-of Test Init
86 18.713661 10 MN(ar3) CN(ar1) MIPv6 Care-of Test 87 18.714244 10 CN(ar1) MN(ar3) MIPv6 Care-of Test 88 18.715486 7 CN(ar1) MN(ar3) MIPv6 Care-of Test 90 18.715486 15 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.715843 15 CN(ar1) MN(ar3) MIPv6 Care-of Test 92 18.715840 16 CN(ar1) MN(ar3) MIPv6 Care-of Test 93 18.716047 17 CN(ar1) MN(ar3) ICMPv6 Care-of Test 94 18.831492 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 97 18.831606 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 98 18.831795 16 HA(home:1) MN(ar3) ICMPv6	84	18.712538	7	MN(ar3)	CN(ar1)	MIPv6	Care-of Test Init
87 18.714244 10 CN(ar1) MN(ar3) MIPv6 Care-of Test 88 18.714247 8 CN(ar1) MN(ar3) MIPv6 Care-of Test 89 18.715486 7 CN(ar1) MN(ar3) MIPv6 Care-of Test 90 18.715834 15 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.715840 16 CN(ar1) MN(ar3) MIPv6 Care-of Test 93 18.716047 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 94 18.716051 CM(ar1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 94 18.831402 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 97 18.831602 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 98 18.831606 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 100 18.831795 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 101 18.832054 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) <	85	18.713657	8	MN(ar3)	CN(ar1)	MIPv6	Care-of Test Init
88 18.714247 8 CN(ar1) MN(ar3) MIPv6 Care-of Test 90 18.715486 7 CN(ar1) MN(ar3) MIPv6 Care-of Test 90 18.715840 16 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.715840 16 CN(ar1) MN(ar3) MIPv6 Care-of Test 92 18.716047 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 93 18.716051 1 CN(ar1) MN(ar3) MIPv6 Care-of Test 94 18.716051 1 CN(ar1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 96 18.831495 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 97 18.831606 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 98 18.831790 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 100 18.832054 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 101 18.8325	86	18.713661	10	MN(ar3)	CN(ar1)	MIPv6	Care-of Test Init
89 18.715486 7 CN(ar1) MN(ar3) MIPv6 Care-of Test 90 18.715491 13 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.715834 15 CN(ar1) MN(ar3) MIPv6 Care-of Test 92 18.715840 16 CN(ar1) MN(ar3) MIPv6 Care-of Test 93 18.716047 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 94 18.716051 1 CN(ar1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 96 18.831602 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 97 18.831606 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 98 18.831790 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 100 18.831795 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 101 18.832054 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 102 18.832059 1 HA(home:1) MN(ar3) ICMPv6 Unreachabl	87	18.714244	10	CN(ar1)	MN(ar3)	MIPv6	Care-of Test
90 18.715491 13 CN(ar1) MN(ar3) MIPv6 Care-of Test 91 18.715840 16 CN(ar1) MN(ar3) MIPv6 Care-of Test 92 18.716047 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 93 18.716051 1 CN(ar1) MN(ar3) MIPv6 Care-of Test 94 18.716051 1 CN(ar1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 95 18.831602 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 97 18.831602 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 98 18.831606 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 100 18.831790 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 101 18.832054 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 102 18.832505 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)	88	18.714247	8	CN(ar1)	MN(ar3)	MIPv6	Care-of Test
91 18.715834 15 CN(ar1) MN(ar3) MIPv6 Care-of Test 92 18.715840 16 CN(ar1) MN(ar3) MIPv6 Care-of Test 93 18.716047 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 94 18.716051 1 CN(ar1) MN(ar3) MIPv6 Care-of Test 95 18.831495 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 97 18.831602 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 98 18.831602 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 99 18.831602 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 99 18.831602 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 100 18.831602 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 101 18.831604 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 102 18.832050 1 HA(home:1) MN(ar3)	89	18.715486	7	CN(ar1)	MN(ar3)	MIPv6	Care-of Test
92 18.715840 16 CN(ar1) MN(ar3) MIPv6 Care-of Test 93 18.716047 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 94 18.716051 1 CN(ar1) MN(ar3) MIPv6 Care-of Test 95 18.831495 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 96 18.831602 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 97 18.831606 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 98 18.831606 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 91 18.831795 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 100 18.832054 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 101 18.832059 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 103 18.83250 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 104 18.832505 1 HA(home:1)	90	18.715491	13	CN(ar1)	MN(ar3)	MIPv6	Care-of Test
93 18.716047 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 94 18.716051 1 CN(ar1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 95 18.831495 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 96 18.831502 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 97 18.831602 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 98 18.831606 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 99 18.831790 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 100 18.832054 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 101 18.832059 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 103 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 104 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 105 18.832505	91	18.715834	15	CN(ar1)	MN(ar3)	MIPv6	Care-of Test
93 18.716047 17 CN(ar1) MN(ar3) MIPv6 Care-of Test 94 18.716051 1 CN(ar1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 95 18.831495 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 96 18.831502 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 97 18.831602 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 98 18.831606 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 99 18.831790 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 100 18.832054 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 101 18.832059 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 103 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 104 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 105 18.832505						MIPv6	Care-of Test
94 18.716051 1 CN(ar1) MN(ar3) MIPv6 Care-of Test 95 18.831495 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 96 18.831602 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 97 18.831602 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 98 18.831606 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 99 18.831790 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 100 18.831795 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 101 18.832054 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 103 18.832325 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 104 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 105 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 106 18.832505						MIPv6	Care-of Test
95 18.831495 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 96 18.831502 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 97 18.831602 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 98 18.831606 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 99 18.831790 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 100 18.831795 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 101 18.832054 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 102 18.832059 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 103 18.832325 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 104 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 105 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 106						MIPv6	Care-of Test
96 18.831502 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 97 18.831602 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 98 18.831606 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 99 18.831790 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 100 18.831795 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 101 18.832054 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 102 18.832059 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 103 18.832321 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 104 18.832325 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 105 18.832500 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 106 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 107						ICMPv6	Unreachable (Port unreachable)
97 18.831602 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 98 18.831606 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 99 18.831790 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 100 18.831795 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 101 18.832054 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 102 18.832059 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 103 18.832321 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 104 18.83250 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 105 18.832500 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 106 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 107 19.710484 1 MN(home) CN(ar1) GIST Query 108 19.71048			13				
98 18.831606 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 99 18.831790 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 100 18.831795 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 101 18.832054 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 102 18.832059 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 103 18.832051 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 104 18.832325 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 105 18.832500 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 106 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 107 19.710184 1 MN(home) CN(ar1) GIST Query 108 19.710408 16 MN(home) CN(ar1) GIST Query 111 19.710658 13 MN(h							
99 18.831790 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 100 18.831795 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 101 18.832054 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 102 18.832059 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 103 18.832051 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 104 18.832050 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 105 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 106 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 107 19.710193 17 MN(home) CN(ar1) GIST Query 108 19.71044 15 MN(home) CN(ar1) GIST Query <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
100 18.831795 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 101 18.832054 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 102 18.832059 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 103 18.832059 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 104 18.832325 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 105 18.832500 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 106 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 107 19.710184 1 MN(home) CN(ar1) GIST Query 108 19.710408 16 MN(home) CN(ar1) GIST Query 110 19.710408 16 MN(home) CN(ar1) GIST Query 111 19.710408 16 MN(home) CN(ar1) GIST Query 112 19.710404 15 MN(home) CN(ar1) GIST Query </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
101 18.832054 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 102 18.832059 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 103 18.832321 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 104 18.832325 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 105 18.832500 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 106 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 106 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 107 19.710184 1 MN(home) CN(ar1) GIST Query 108 19.710408 16 MN(home) CN(ar1) GIST Query 110 19.710408 13 MN(home) CN(ar1) GIST Query 111 19.71064 4 MN(home) CN(ar1) GIST Query 112 19.71064 4 MN(home) CN(ar1) GIST Query							
102 18.832059 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 103 18.832321 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 104 18.832325 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 105 18.832500 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 106 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 107 19.710184 1 MN(home) CN(ar1) GIST Query 108 19.710193 17 MN(home) CN(ar1) GIST Query 109 19.710408 16 MN(home) CN(ar1) GIST Query 110 19.710658 13 MN(home) CN(ar1) GIST Query 111 19.712659 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 114 19.712664 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 115 19.713315 15 HA(home:1) MN(ar3) ICMPv6 Unre							
103 18.832321 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 104 18.832325 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 105 18.832500 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 106 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 107 19.710184 1 MN(home) CN(ar1) GIST Query 108 19.710193 17 MN(home) CN(ar1) GIST Query 109 19.710408 16 MN(home) CN(ar1) GIST Query 110 19.710414 15 MN(home) CN(ar1) GIST Query 111 19.710658 13 MN(home) CN(ar1) GIST Query 112 19.710664 4 MN(home) CN(ar1) GIST Query 113 19.712659 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 114 19.713315 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) <							
104 18.832325 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 105 18.832500 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 106 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 107 19.710184 1 MN(home) CN(ar1) GIST Query 108 19.710193 17 MN(home) CN(ar1) GIST Query 109 19.710408 16 MN(home) CN(ar1) GIST Query 110 19.710414 15 MN(home) CN(ar1) GIST Query 111 19.710658 13 MN(home) CN(ar1) GIST Query 112 19.710664 4 MN(home) CN(ar1) GIST Query 113 19.712659 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 114 19.712664 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 115 19.713315 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) <							
105 18.832500 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 106 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 107 19.710184 1 MN(home) CN(ar1) GIST Query 108 19.710193 17 MN(home) CN(ar1) GIST Query 109 19.710408 16 MN(home) CN(ar1) GIST Query 110 19.710414 15 MN(home) CN(ar1) GIST Query 111 19.710658 13 MN(home) CN(ar1) GIST Query 112 19.710664 4 MN(home) CN(ar1) GIST Query 113 19.712659 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 114 19.713664 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 115 19.713315 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 116 19.713523 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) <							
106 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 107 19.710184 1 MN(home) CN(ar1) GIST Query 108 19.710193 17 MN(home) CN(ar1) GIST Query 109 19.710408 16 MN(home) CN(ar1) GIST Query 110 19.710414 15 MN(home) CN(ar1) GIST Query 111 19.710658 13 MN(home) CN(ar1) GIST Query 112 19.710664 4 MN(home) CN(ar1) GIST Query 113 19.712659 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 114 19.712664 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 115 19.713315 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 116 19.713523 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 117 19.713527 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
107 19.710184 1 MN(home) CN(ar1) GIST Query 108 19.710193 17 MN(home) CN(ar1) GIST Query 109 19.710408 16 MN(home) CN(ar1) GIST Query 110 19.710414 15 MN(home) CN(ar1) GIST Query 111 19.710658 13 MN(home) CN(ar1) GIST Query 112 19.710664 4 MN(home) CN(ar1) GIST Query 113 19.712659 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 114 19.712664 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 115 19.713315 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 116 19.713523 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 118 19.713527 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 119 19.855937 1 MN(home) HA(home:2) GIST Data, RESERVE 120 <							
108 19.710193 17 MN(home) CN(ar1) GIST Query 109 19.710408 16 MN(home) CN(ar1) GIST Query 110 19.710414 15 MN(home) CN(ar1) GIST Query 111 19.710658 13 MN(home) CN(ar1) GIST Query 111 19.710658 13 MN(home) CN(ar1) GIST Query 112 19.710664 4 MN(home) CN(ar1) GIST Query 113 19.712659 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 114 19.712664 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 115 19.713315 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 116 19.713320 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 117 19.713523 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 118 19.713527 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)							
109 19.710408 16 MN(home) CN(ar1) GIST Query 110 19.710414 15 MN(home) CN(ar1) GIST Query 111 19.710658 13 MN(home) CN(ar1) GIST Query 112 19.710664 4 MN(home) CN(ar1) GIST Query 113 19.712659 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 114 19.712664 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 115 19.713315 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 116 19.713320 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 117 19.713523 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 118 19.713527 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 119 19.855937 1 MN(home) HA(home:2) GIST Data, RESERVE 120 19.855946 17 MN(home) HA(home:2) GIST Data, RESERVE							•
110 19.710414 15 MN(home) CN(ar1) GIST Query 111 19.710658 13 MN(home) CN(ar1) GIST Query 112 19.710664 4 MN(home) CN(ar1) GIST Query 113 19.712659 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 114 19.712664 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 115 19.713315 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 116 19.71320 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 117 19.713523 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 118 19.713527 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 119 19.855937 1 MN(home) HA(home:2) GIST Data, RESERVE 120 19.855946 17 MN(home) HA(home:2) GIST Data, RESERVE							
11119.71065813MN(home)CN(ar1)GIST Query11219.7106644MN(home)CN(ar1)GIST Query11319.7126594HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11419.71266413HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11519.71331515HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11619.71332016HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11719.71352317HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11819.7135271HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11919.8559371MN(home)HA(home:2)GIST Data, RESERVE12019.85594617MN(home)HA(home:2)GIST Data, RESERVE							•
11219.7106644MN(home)CN(ar1)GIST Query11319.7126594HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11419.71266413HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11519.71331515HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11619.71332016HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11719.71352317HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11819.7135271HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11919.8559371MN(home)HA(home:2)GIST Data, RESERVE12019.85594617MN(home)HA(home:2)GIST Data, RESERVE							
11319.7126594HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11419.71266413HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11519.71331515HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11619.71332016HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11719.71352317HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11819.7135271HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11919.8559371MN(home)HA(home:2)GIST Data, RESERVE12019.85594617MN(home)HA(home:2)GIST Data, RESERVE							
11419.71266413HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11519.71331515HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11619.7132016HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11719.71352317HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11819.7135271HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11919.8559371MN(home)HA(home:2)GIST Data, RESERVE12019.85594617MN(home)HA(home:2)GIST Data, RESERVE							•
11519.71331515HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11619.71332016HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11719.71352317HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11819.7135271HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11919.8559371MN(home)HA(home:2)GIST Data, RESERVE12019.85594617MN(home)HA(home:2)GIST Data, RESERVE							
11619.71332016HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11719.71352317HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11819.7135271HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11919.8559371MN(home)HA(home:2)GIST Data, RESERVE12019.85594617MN(home)HA(home:2)GIST Data, RESERVE							
11719.71352317HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11819.7135271HA(home:1)MN(ar3)ICMPv6 Unreachable (Port unreachable)11919.8559371MN(home)HA(home:2)GIST Data, RESERVE12019.85594617MN(home)HA(home:2)GIST Data, RESERVE							
118 19.713527 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable) 119 19.855937 1 MN(home) HA(home:2) GIST Data, RESERVE 120 19.855946 17 MN(home) HA(home:2) GIST Data, RESERVE							
119 19.855937 1 MN(home) HA(home:2) GIST Data, RESERVE 120 19.855946 17 MN(home) HA(home:2) GIST Data, RESERVE							
120 19.855946 17 MN(home) HA(home:2) GIST Data, RESERVE							
							-
121 19.000194 10 FUN(HOME) HA(HOME:2) GIDI Data, KEDEKVE							-
	IZI	19.000194	10	run (monne)	IIA (IIOIlle:2)	9191	

122	19.856200	15	MN(home)	HA(home:2)	GIST	Data, RESERVE
123	19.856489	13	MN(home)	HA(home:2)	GIST	Data, RESERVE
124	19.856495	4	MN(home)	HA(home:2)	GIST	Data, RESERVE
125	20.039062	4	HA(home:1)	MN(ar3)	ICMPv6	Unreachable (Port unreachable)
126	20.039070	13	HA(home:1)	MN(ar3)		Unreachable (Port unreachable)
127	20.039372	15	HA(home:1)	MN(ar3)		Unreachable (Port unreachable)
128	20.039379	16	HA(home:1)	MN(ar3)		Unreachable (Port unreachable)
129	20.039611	17	HA(home:1)	MN(ar3)		Unreachable (Port unreachable)
130	20.039616	1	HA(home:1)	MN(ar3)		Unreachable (Port unreachable)
131	20.122215	1	MN(ar3)	HA(home:1)		Binding Update
132	20.122221	17	MN(ar3)	HA(home:1)		Binding Update
133	20.122444	16	MN(ar3)	HA(home:1)		Binding Update
134	20.122450	15	MN(ar3)	HA(home:1)		Binding Update
135	20.122760	13	MN(ar3)	HA(home:1)		Binding Update
136	20.122767	4	MN(ar3)	HA(home:1)		Binding Update
137	20.266539	4	HA(inet)	CN(ar1)		Query
138	20.266547	7	HA(inet)	CN(ar1)		Query
139	20.267871	7	AR1(inet)	HA(inet)		Response
140	20.267877	4	AR1(inet)	HA(inet)		Response
141	20.268995	4	HA(inet)	AR1(inet)		Confirm
142	20.269000	7	HA(inet)	AR1(inet)		Confirm
143	20.270258	4	HA(home:1)	MN(ar3)		Binding Acknowledgement
144	20.270263	13	HA(home:1)	MN(ar3)		Binding Acknowledgement
145	20.270489	15	HA(home:1)	MN(ar3)		Binding Acknowledgement
146	20.270495	16	HA(home:1)	MN(ar3)		Binding Acknowledgement
147	20.270672	4	HA(home:1)	MN(ar3)		Binding Acknowledgement
148	20.270677	13	HA(home:1)	MN(ar3)		Binding Acknowledgement
149	20.270709	17	HA(home:1)	MN(ar3)		Binding Acknowledgement
150	20.270714	1	HA(home:1)	MN(ar3)		Binding Acknowledgement
151	20.270967	15	HA(home:1)	MN(ar3)		Binding Acknowledgement
152	20.270972	16	HA(home:1)	MN(ar3)		Binding Acknowledgement
153	20.271195	17	HA(home:1)	MN(ar3)		Binding Acknowledgement
154	20.271200	1	HA(home:1)	MN(ar3)		Binding Acknowledgement
155	21.710926	1	MN(home)	CN(ar1)		Query
156	21.710936	17	MN(home)	CN(ar1)		Query
157	21.711167	16	MN(home)	CN(ar1)		Query
158	21.711173	15	MN(home)	CN(ar1)		Query
159	21.711459	13	MN(home)	CN(ar1)		Query
160	21.711467	4	MN(home)	CN(ar1)		Query
161	21.712898	4	HA(home:2)	MN(home)		Response
162 163	21.712905	13 15	HA(home:2) HA(home:2)	MN(home)		Response
164	21.713084 21.713090	16	HA(home:2)	MN(home) MN(home)		Response Response
165	21.713266	10	HA(home:2)	MN(home)		Response
166	21.713272	1	HA(home:2)	MN(home)		Response
167	21.714195	1	MN(home)	HA(home:2)		Confirm
168	21.714195	17	MN(home)	HA(home:2)		Confirm
169	21.714368	16	MN(home)	HA(home:2)		Confirm
170	21.714373	15	MN(home)	HA(home:2)		Confirm
170	21.714373	13	MN(home)	HA(home:2)		Confirm
172	21.714619	4	MN(home)	HA(home:2)		Confirm
173	21.919103	4	HA(inet)	AR1(inet)		Data, RESERVE
174	21.919105	7	HA(inet)	AR1(inet)		Data, RESERVE
175	23.502293	8	AR1(ar1)	CN(ar1)		Data, RESERVE
176	23.502297	10	AR1(ar1)	CN(ar1)		Data, RESERVE
177	23.713281	10	MN(home)	CN(ar1)		Home Test Init
178	23.713286	17	MN(home)	CN(ar1)		Home Test Init
179	23.713563	16	MN(home)	CN(ar1)		Home Test Init
180	23.713569	15	MN(home)	CN(ar1)		Home Test Init

181	23.713784	13	MN(home)	CN(ar1)	MIPv6 Home Test Init
182	23.713788	4	MN(home)	CN(ar1)	MIPv6 Home Test Init
183	23.714116	4	MN(home)	CN(ar1)	MIPv6 Home Test Init
184	23.714120	7	MN(home)	CN(ar1)	MIPv6 Home Test Init
185	23.714290	8	MN(home)	CN(ar1)	MIPv6 Home Test Init
186	23.714295	10	MN(home)	CN(ar1)	MIPv6 Home Test Init
187	23.714779	10	CN(ar1)	MN(home)	MIPv6 Home Test
188	23.714784	8	CN(ar1)	MN(home)	MIPv6 Home Test
189	23.714950	7	CN(ar1)	MN(home)	MIPv6 Home Test
190	23.714956	4	CN(ar1)	MN(home)	MIPv6 Home Test
191	23.715488	4	CN(ar1)	MN(home)	MIPv6 Home Test
192	23.715493	13	CN(ar1)	MN(home)	MIPv6 Home Test
193	23.715676	15	CN(ar1)	MN(home)	MIPv6 Home Test
194	23.715682	16	CN(ar1)	MN(home)	MIPv6 Home Test
195	23.716097	17	CN(ar1)	MN(home)	MIPv6 Home Test
196	23.716102	1	CN(ar1)	MN(home)	MIPv6 Home Test

A.1.4 Handover to AR3 - Route-optimized

			00 11100	2000100	op on an	
197	23.716784	1	MN(ar3)	CN(ar1)	MIPv6	Binding Update
198	23.716789	17	MN(ar3)	CN(ar1)	MIPv6	Binding Update
199	23.717418	16	MN(ar3)	CN(ar1)	MIPv6	Binding Update
200	23.717422	15	MN(ar3)	CN(ar1)	MIPv6	Binding Update
201	23.717735	13	MN(ar3)	CN(ar1)	MIPv6	Binding Update
202	23.717739	7	MN(ar3)	CN(ar1)	MIPv6	Binding Update
203	23.718019	8	MN(ar3)	CN(ar1)	MIPv6	Binding Update
204	23.718024	10	MN(ar3)	CN(ar1)	MIPv6	Binding Update
205	23.718810	10	CN(ar1)	MN(ar3)	MIPv6	Binding Acknowledgement
206	23.718813	8	CN(ar1)	MN(ar3)	MIPv6	Binding Acknowledgement
207	23.719011	7	CN(ar1)	MN(ar3)	MIPv6	Binding Acknowledgement
208	23.719015	13	CN(ar1)	MN(ar3)	MIPv6	Binding Acknowledgement
209	23.720266	15	CN(ar1)	MN(ar3)	MIPv6	Binding Acknowledgement
210	23.720270	16	CN(ar1)	MN(ar3)	MIPv6	Binding Acknowledgement
211	23.720467	17	CN(ar1)	MN(ar3)	MIPv6	Binding Acknowledgement
212	23.720472	1	CN(ar1)	MN(ar3)	MIPv6	Binding Acknowledgement
213	23.722132	1	MN(ar3)	CN(ar1)	GIST	Query
1	Message rou	ting inf	ormation obj	ect		
	Object	Header				
	MRI typ					
	Flags:	0x00				
	IP vers					
	Flags:	0x800 (P)			
	Source	address:	MN(ar3)			
			ress: CN(ar1	.)		
			prefix: 128			
			ress prefix:	0		
		1: UDP (
214	23.722137	17	MN(ar3)	CN(ar1)		Query
215	23.726605	17	AR3(ar3)	MN(ar3)		Response
216	23.726610	1	AR3(ar3)	MN(ar3)		Response
217	23.732232	1	MN(ar3)	AR3(ar3)		Confirm
218	23.732236	17	MN(ar3)	AR3(ar3)		Confirm
219	23.732239	1	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
220	23.732242	17	MN(ar3)	AR3(ar3)		Data, RESERVE
221	23.737756		AR3(inet2)	CN(ar1)		Query
222	23.737764		AR3(inet2)	CN(ar1)		Query
223	23.743691	15	AR2(inet2)	AR3(inet2)	GIST	Response

224	23.743700	16	AR2(inet2)	AR3(inet2)	GIST	Response
225	23.745032	16	AR3(inet2)	AR2(inet2)	GIST	Confirm
226	23.745039	15	AR3(inet2)	AR2(inet2)	GIST	Confirm
227	23.745557	16	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
228	23.745561	15	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
229	23.752856	13	AR2(inet)	CN(ar1)	GIST	Query
230	23.752865	7	AR2(inet)	CN(ar1)	GIST	Query
231	23.754184	7	AR1(inet)	AR2(inet)	GIST	Response
232	23.754189	13	AR1(inet)	AR2(inet)		Response
233	23.755226	13	AR2(inet)	AR1(inet)	GIST	Confirm
234	23.755232	7	AR2(inet)	AR1(inet)	GIST	Confirm
235	23.755694	13	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
236	23.755698	7	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
237	23.756939	7	AR1(inet)	HA(inet)	GIST	Data, NOTIFY*
238	23.756944	4	AR1(inet)	HA(inet)	GIST	Data, NOTIFY*
239	23.757809	8	AR1(ar1)	CN(ar1)		Query
240	23.757814	10	AR1(ar1)	CN(ar1)	GIST	Query
241	23.759482	10	CN(ar1)	AR1(ar1)	GIST	Response
242	23.759489	8	CN(ar1)	AR1(ar1)		Response
243	23.759645	4	HA(home:2)	MN(home)	GIST	Data, NOTIFY*
244	23.759650	13	HA(home:2)	MN(home)		Data, NOTIFY*
245	23.759926	15	HA(home:2)	MN(home)	GIST	Data, NOTIFY*
246	23.759932	16	HA(home:2)	MN(home)	GIST	Data, NOTIFY*
247	23.760210	17	HA(home:2)	MN(home)	GIST	Data, NOTIFY*
248	23.760216	1	HA(home:2)	MN(home)	GIST	Data, NOTIFY*
249	23.760658	8	AR1(ar1)	CN(ar1)	GIST	Confirm
250	23.760663	10	AR1(ar1)	CN(ar1)	GIST	Confirm
251	23.761174	8	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
252	23.761178	10	AR1(ar1)	CN(ar1)		Data, RESERVE
253	23.763173	10	CN(ar1)	AR1(ar1)	GIST	Data, RESPONSE
254	23.763179	8	CN(ar1)	AR1(ar1)	GIST	Data, RESPONSE
255	23.764478	7	AR1(inet)	AR2(inet)	GIST	Data, RESPONSE
256	23.764485	13	AR1(inet)	AR2(inet)	GIST	Data, RESPONSE
257	23.765935	15	AR2(inet2)	AR3(inet2)	GIST	Data, RESPONSE
258	23.765944	16	AR2(inet2)	AR3(inet2)	GIST	Data, RESPONSE
259	23.768787	17	AR3(ar3)	MN(ar3)	GIST	Data, RESPONSE
260	23.768795	1	AR3(ar3)	MN(ar3)	GIST	Data, RESPONSE
261	23.770635	1	MN(home)	HA(home:2)	GIST	Data, RESERVE(TEAR)*
262	23.770662	17	MN(home)	HA(home:2)	GIST	Data, RESERVE(TEAR)*
263	23.770896	16	MN(home)	HA(home:2)	GIST	Data, RESERVE(TEAR)*
264	23.770902	15	MN(home)	HA(home:2)		Data, RESERVE(TEAR)*
265	23.771172	13	MN(home)	HA(home:2)		Data, RESERVE(TEAR)*
266	23.771179	4	MN(home)	HA(home:2)		Data, RESERVE(TEAR)*
267	23.772832	4	HA(inet)	AR1(inet)		Data, RESERVE(TEAR)*
268	23.772840	7	HA(inet)	AR1(inet)		Data, RESERVE(TEAR)*
						- · · · · · ·

A.1.5 At AR3: Hop-to-Hop Refreshes

269	23.855794	1	MN(ar3)	AR3(ar3)	GIST Data, RESERVE
270	23.855804	17	MN(ar3)	AR3(ar3)	GIST Data, RESERVE
271	27.181178	16	AR3(inet2)	AR2(inet2)	GIST Data, RESERVE
272	27.181186	15	AR3(inet2)	AR2(inet2)	GIST Data, RESERVE
273	27.416567	13	AR2(inet)	AR1(inet)	GIST Data, RESERVE
274	27.416579	7	AR2(inet)	AR1(inet)	GIST Data, RESERVE
275	27.502663	8	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
276	27.502670	10	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
277	28.857577	1	MN(ar3)	AR3(ar3)	GIST Data, RESERVE
278	28.857583	17	MN(ar3)	AR3(ar3)	GIST Data, RESERVE

279	29.104851	8	AR1(ar1)	CN(ar1)	GIST	Query
280	29.104859	10	AR1(ar1)	CN(ar1)		Query
281	29.105766	10	CN(ar1)	AR1(ar1)	GIST	Response
282	29.105771	8	CN(ar1)	AR1(ar1)	GIST	Response
283	29.106521	8	AR1(ar1)	CN(ar1)	GIST	Confirm
284	29.106526	10	AR1(ar1)	CN(ar1)	GIST	Confirm
285	29.857511	1	MN(ar3)	AR3(ar3)		Data, RESERVE
286	29.857516	17	MN(ar3)	AR3(ar3)		Data, RESERVE
287	31.182990	16	AR3(inet2)	AR2(inet2)		Data, RESERVE
288	31.182997	15	AR3(inet2)	AR2(inet2)		Data, RESERVE
	32.416355	13				
289			AR2(inet)	AR1(inet)		Data, RESERVE
290	32.416363	7	AR2(inet)	AR1(inet)		Data, RESERVE
291	32.907731	16	AR3(inet2)	CN(ar1)		Query
292	32.907738	15	AR3(inet2)	CN(ar1)		Query
293	32.908838	15	AR2(inet2)	AR3(inet2)		Response
294	32.908843	16	AR2(inet2)	AR3(inet2)		Response
295	32.909773	16	AR3(inet2)	AR2(inet2)		Confirm
296	32.909777	15	AR3(inet2)	AR2(inet2)	GIST	Confirm
297	33.503413	8	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
298	33.503420	10	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
299	34.858226	1	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
300	34.858233	17	MN(ar3)	AR3(ar3)		Data, RESERVE
301	37.182174	16	AR3(inet2)	AR2(inet2)		Data, RESERVE
302	37.182182	15	AR3(inet2)	AR2(inet2)		Data, RESERVE
303	37.417825	13	AR2(inet)	AR1(inet)		Data, RESERVE
304	37.417835	7	AR2(inet)	AR1(inet)		Data, RESERVE
305	37.859685	1	MN(ar3)	AR3(ar3)		Data, RESERVE
305	37.859685	17	MN(ar3) MN(ar3)	AR3(ar3)		Data, RESERVE
307	38.503569	8	AR1(ar1)	CN(ar1)		Data, RESERVE
308	38.503576	10	AR1(ar1)	CN(ar1)		Data, RESERVE
309	39.814209	13	AR2(inet)	CN(ar1)		Query
310	39.814218	7	AR2(inet)	CN(ar1)		Query
311	39.815113	7	AR1(inet)	AR2(inet)		Response
312	39.815118	13	AR1(inet)	AR2(inet)		Response
313	39.815848	13	AR2(inet)	AR1(inet)		Confirm
314	39.815852	7	AR2(inet)	AR1(inet)	GIST	Confirm
315	39.834480	8	AR1(ar1)	CN(ar1)	GIST	Query
316	39.834489	10	AR1(ar1)	CN(ar1)	GIST	Query
317	39.835647	10	CN(ar1)	AR1(ar1)	GIST	Response
318	39.835652	8	CN(ar1)	AR1(ar1)	GIST	Response
319	39.836308	8	AR1(ar1)	CN(ar1)	GIST	Confirm
320	39.836313	10	AR1(ar1)	CN(ar1)		Confirm
321	39.875436	8	AR1(ar1)	CN(ar1)		Query
322	39.875448	10	AR1(ar1)	CN(ar1)		Query
323	39.876365	10	CN(ar1)	AR1(ar1)		Response
324	39.876370	8	CN(ar1)	AR1(ar1)		Response
325	39.877171	8	AR1(ar1)	CN(ar1)		Confirm
326	39.877175	10	AR1(ar1)	CN(ar1) CN(ar1)		Confirm
		16	AR3(inet2)	AR2(inet2)		
327	41.183187					Data, RESERVE
328	41.183196	15	AR3(inet2)	AR2(inet2)		Data, RESERVE
329	41.534393	1	MN(ar3)	CN(ar1)		Query
330	41.534402	17	MN(ar3)	CN(ar1)		Query
331	41.535462	17	AR3(ar3)	MN(ar3)		Response
332	41.535467	1	AR3(ar3)	MN(ar3)		Response
333	41.536355	1	MN(ar3)	AR3(ar3)		Confirm
334	41.536360	17	MN(ar3)	AR3(ar3)		Confirm
335	42.504126	8	AR1(ar1)	CN(ar1)		Data, RESERVE
336	42.504134	10	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
337	42.859812	1	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE

338	42.859822	17	MN(ar3)	AR3(ar3)		Data, RESERVE
339	44.417723	13	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
340	44.417733	7	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
341	46.184568	16	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
342	46.184575	15	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
343	47.859425	1	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
344	47.859435	17	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
345	48.817323	13	AR2(inet)	CN(ar1)	GIST	Query
346	48.817335	7	AR2(inet)	CN(ar1)	GIST	Query
347	48.818355	7	AR1(inet)	AR2(inet)	GIST	Response
348	48.818362	13	AR1(inet)	AR2(inet)	GIST	Response
349	48.819167	13	AR2(inet)	AR1(inet)	GIST	Confirm
350	48.819173	7	AR2(inet)	AR1(inet)	GIST	Confirm
351	49.505237	8	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
352	49.505247	10	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
353	50.859442	1	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
354	50.859451	17	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
355	51.418648	13	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
356	51.418656	7	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
357	52.185063	16	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
358	52.185069	15	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
359	52.506058	8	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
360	52.506064	10	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
361	55.233612	16	AR3(inet2)	CN(ar1)	GIST	Query
362	55.233620	15	AR3(inet2)	CN(ar1)	GIST	Query
363	55.234717	15	AR2(inet2)	AR3(inet2)	GIST	Response
364	55.234724	16	AR2(inet2)	AR3(inet2)	GIST	Response
365	55.235441	16	AR3(inet2)	AR2(inet2)	GIST	Confirm
366	55.235446	15	AR3(inet2)	AR2(inet2)	GIST	Confirm
367	55.861016	1	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
368	55.861025	17	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
369	56.184588	16	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
370	56.184599	15	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
371	56.420297	13	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
372	56.420307	7	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
373	57.506474	8	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
374	57.506478	10	AR1(ar1)	CN(ar1)		Data, RESERVE
375	59.420254	13	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
376	59.420262	7	AR2(inet)	AR1(inet)		Data, RESERVE

A.1.6 Handover to AR1

377	60.742141	1	MN(ar1)	HA(home:1)	MIPv6 Binding Update
378	60.742147	8	MN(ar1)	HA(home:1)	MIPv6 Binding Update
379	60.742389	7	MN(ar1)	HA(home:1)	MIPv6 Binding Update
380	60.742395	4	MN(ar1)	HA(home:1)	MIPv6 Binding Update
381	60.743437	4	HA(home:1)	MN(ar1)	MIPv6 Binding Acknowledgement
382	60.743441	7	HA(home:1)	MN(ar1)	MIPv6 Binding Acknowledgement
383	60.749343	8	HA(home:1)	MN(ar1)	MIPv6 Binding Acknowledgement
384	60.749348	1	HA(home:1)	MN(ar1)	MIPv6 Binding Acknowledgement
385	60.751322	1	MN(ar1)	CN(ar1)	MIPv6 Care-of Test Init
386	60.751325	10	MN(ar1)	CN(ar1)	MIPv6 Care-of Test Init
387	60.751756	10	CN(ar1)	MN(ar1)	MIPv6 Care-of Test
388	60.751761	1	CN(ar1)	MN(ar1)	MIPv6 Care-of Test
389	60.752335	1	MN(ar1)	CN(ar1)	MIPv6 Binding Update
390	60.752340	10	MN(ar1)	CN(ar1)	MIPv6 Binding Update
391	60.753206	10	CN(ar1)	MN(ar1)	MIPv6 Binding Acknowledgement
392	60.753212	1	CN(ar1)	MN(ar1)	MIPv6 Binding Acknowledgement

393	60.754686	1	MN(ar1)	CN(ar1)	GIST	Query			
	Message routing information object								
Object Header									
MRI type: 0									
	Flags:	0x00							
	IP vers	ion: 6							
	Flags:	0x800 ((P)						
	Source	address	: MN(ar1)						
	Destina	tion ad	ldress: CN(ar1	L)					
	Source	address	prefix: 128						
	Destina	tion ad	dress prefix:	: 0					
	Protoco	l: UDP	(0x11)						
394	60.754693	10	MN(ar1)	CN(ar1)	GIST	Query			
395	60.755788	10	CN(ar1)	MN(ar1)	GIST	Response			
396	60.755796		CN(ar1)	MN(ar1)		Response			
397	60.757484		MN(ar1)	CN(ar1)		Confirm			
398	60.757490		MN(ar1)	CN(ar1)	GIST	Confirm			
399	60.758839	1	MN(ar1)	CN(ar1)	GIST	Data, RESERVE			
400	60.758849		MN(ar1)	CN(ar1)		Data, RESERVE			
401	60.760110	10	CN(ar1)	AR1(ar1)	GIST	Data, NOTIFY*			
402	60.760119	8	CN(ar1)	AR1(ar1)	GIST	Data, NOTIFY*			
403	60.760644		CN(ar1)	MN(ar1)	GIST	Data, RESPONSE			
404	60.760651	1	CN(ar1)	MN(ar1)	GIST	Data, RESPONSE			
405	60.761838		AR1(inet)		GIST	Data, NOTIFY*			
406	60.761848	13	AR1(inet)	AR2(inet)	GIST	Data, NOTIFY*			
407		15	AR2(inet2)		GIST	Data, NOTIFY*			
408	60.763532	16	AR2(inet2)	AR3(inet2)		Data, NOTIFY*			
409	60.765241	17	AR3(ar3)	MN(ar3)	GIST	Data, NOTIFY*			

A.1.7 At AR1: Hop-to-Hop Refreshes for old and new path

410	60.954115	8	AR1(ar1)	CN(ar1)	GIST Query*
411	60.954129	10	AR1(ar1)	CN(ar1)	GIST Query*
412	60.954918	10	CN(ar1)	AR1(ar1)	GIST Response*
413	60.954927	8	CN(ar1)	AR1(ar1)	GIST Response*
414	60.955926	8	AR1(ar1)	CN(ar1)	GIST Confirm*
415	60.955931	10	AR1(ar1)	CN(ar1)	GIST Confirm*
416	61.185140	16	AR3(inet2)	AR2(inet2)	GIST Data, RESERVE*
417	61.185153	15	AR3(inet2)	AR2(inet2)	GIST Data, RESERVE*
418	61.861044	1	MN(ar1)	CN(ar1)	GIST Data, RESERVE
419	61.861071	10	MN(ar1)	CN(ar1)	GIST Data, RESERVE
420	62.196374	13	AR2(inet)	CN(ar1)	GIST Query*
421	62.196385	7	AR2(inet)	CN(ar1)	GIST Query*
422	62.197437	7	AR1(inet)	AR2(inet)	GIST Response*
423	62.197443	13	AR1(inet)	AR2(inet)	GIST Response*
424	62.198254	13	AR2(inet)	AR1(inet)	GIST Confirm*
425	62.198258	7	AR2(inet)	AR1(inet)	GIST Confirm*
426	62.506613	8	AR1(ar1)	CN(ar1)	GIST Data, RESERVE*
427	62.506621	10	AR1(ar1)	CN(ar1)	GIST Data, RESERVE*
428	63.509084	8	AR1(ar1)	CN(ar1)	GIST Data, RESERVE*
429	63.509101	10	AR1(ar1)	CN(ar1)	GIST Data, RESERVE*
430	64.423049	13	AR2(inet)	AR1(inet)	GIST Data, RESERVE*
431	64.423062	7	AR2(inet)	AR1(inet)	GIST Data, RESERVE*
432	65.186682	16	AR3(inet2)	AR2(inet2)	GIST Data, RESERVE*
433	65.186693	15	AR3(inet2)	AR2(inet2)	GIST Data, RESERVE*
434	66.507951	8	AR1(ar1)	CN(ar1)	GIST Data, RESERVE*
435	66.507961	10	AR1(ar1)	CN(ar1)	GIST Data, RESERVE*

436	67.862029	1	MN(ar1)	CN(ar1)	GIST Data, RESERVE
437	67.862037	10	MN(ar1)	CN(ar1)	GIST Data, RESERVE
438	69.508343	8	AR1(ar1)	CN(ar1)	GIST Data, RESERVE*
439	69.508351	10	AR1(ar1)	CN(ar1)	GIST Data, RESERVE*
440	70.187042	16	AR3(inet2)	AR2(inet2)	GIST Data, RESERVE*
441	70.187049	15	AR3(inet2)	AR2(inet2)	GIST Data, RESERVE*
442	70.425615	13	AR2(inet)	AR1(inet)	GIST Data, RESERVE*
443	70.425624	7	AR2(inet)	AR1(inet)	GIST Data, RESERVE*
444	71.470774	16	AR3(inet2)	CN(ar1)	GIST Query*
445	71.470782	15	AR3(inet2)	CN(ar1)	GIST Query*
446	71.471912	15	AR2(inet2)	AR3(inet2)	GIST Response*
447	71.471917	16	AR2(inet2)	AR3(inet2)	GIST Response*
448	71.472773	16	AR3(inet2)	AR2(inet2)	GIST Confirm*
449	71.472777	15	AR3(inet2)	AR2(inet2)	GIST Confirm*

A.1.8 At AR1: Old Path Teardown

450	71.544132	16	AR3(inet2)	AR2(inet2)	GIST Data, RESERVE(TEAR)*
451	71.544139	15	AR3(inet2)	AR2(inet2)	GIST Data, RESERVE(TEAR)*
452	71.545862	13	AR2(inet)	AR1(inet)	GIST Data, RESERVE(TEAR)*
453	71.545869	7	AR2(inet)	AR1(inet)	GIST Data, RESERVE(TEAR)*
454	71.547833	8	AR1(ar1)	CN(ar1)	GIST Data, RESERVE(TEAR)*
455	71.547837	10	AR1(ar1)	CN(ar1)	GIST Data, RESERVE(TEAR)*

A.1.9 At AR1: Hop-to-Hop Refreshes

456	72.862850	1	MN(ar1)	CN(ar1)	GIST Data, RESERVE
457	72.862856	10	MN(ar1)	CN(ar1)	GIST Data, RESERVE
458	73.072042	1	MN(ar1)	CN(ar1)	GIST Query
459	73.072055	10	MN(ar1)	CN(ar1)	GIST Query
460	73.072807	10	CN(ar1)	MN(ar1)	GIST Response
461	73.072814	1	CN(ar1)	MN(ar1)	GIST Response
462	73.073538	1	MN(ar1)	CN(ar1)	GIST Confirm
463	73.073543	10	MN(ar1)	CN(ar1)	GIST Confirm
464	78.863045	1	MN(ar1)	CN(ar1)	GIST Data, RESERVE
465	78.863057	10	MN(ar1)	CN(ar1)	GIST Data, RESERVE
466	83.864465	1	MN(ar1)	CN(ar1)	GIST Data, RESERVE
467	83.864475	10	MN(ar1)	CN(ar1)	GIST Data, RESERVE
468	88.866291	1	MN(ar1)	CN(ar1)	GIST Data, RESERVE
469	88.866302	10	MN(ar1)	CN(ar1)	GIST Data, RESERVE
470	90.498571	1	MN(ar1)	CN(ar1)	GIST Query
471	90.498581	10	MN(ar1)	CN(ar1)	GIST Query
472	90.499494	10	CN(ar1)	MN(ar1)	GIST Response
473	90.499500	1	CN(ar1)	MN(ar1)	GIST Response
474	90.500249	1	MN(ar1)	CN(ar1)	GIST Confirm
475	90.500255	10	MN(ar1)	CN(ar1)	GIST Confirm
476	93.866678	1	MN(ar1)	CN(ar1)	GIST Data, RESERVE
477	93.866684	10	MN(ar1)	CN(ar1)	GIST Data, RESERVE
478	94.865930	1	MN(ar1)	CN(ar1)	GIST Data, RESERVE
479	94.865937	10	MN(ar1)	CN(ar1)	GIST Data, RESERVE
480	96.865464	1	MN(ar1)	CN(ar1)	GIST Data, RESERVE
481	96.865472	10	MN(ar1)	CN(ar1)	GIST Data, RESERVE
	101.866348	1	MN(ar1)	CN(ar1)	GIST Data, RESERVE
	101.866357	10	MN(ar1)	CN(ar1)	GIST Data, RESERVE
	103.560708	1	MN(ar1)	CN(ar1)	GIST Query
	103.560716	10	MN(ar1)	CN(ar1)	GIST Query
486	103.561597	10	CN(ar1)	MN(ar1)	GIST Response

487	103.561603	1	CN(ar1)	MN(ar1)	GIST Response
488	103.562705	1	MN(ar1)	CN(ar1)	GIST Confirm
489	103.562710	10	MN(ar1)	CN(ar1)	GIST Confirm
490	105.867226	1	MN(ar1)	CN(ar1)	GIST Data, RESERVE
491	105.867237	10	MN(ar1)	CN(ar1)	GIST Data, RESERVE
492	108.867763	1	MN(ar1)	CN(ar1)	GIST Data, RESERVE
493	108.867771	10	MN(ar1)	CN(ar1)	GIST Data, RESERVE
494	110.867718	1	MN(ar1)	CN(ar1)	GIST Data, RESERVE
495	110.867726	10	MN(ar1)	CN(ar1)	GIST Data, RESERVE
496	113.612566	1	MN(ar1)	CN(ar1)	GIST Query
497	113.612577	10	MN(ar1)	CN(ar1)	GIST Query
498	113.613405	10	CN(ar1)	MN(ar1)	GIST Response
499	113.613410	1	CN(ar1)	MN(ar1)	GIST Response
500	113.614862	1	MN(ar1)	CN(ar1)	GIST Confirm
501	113.614867	10	MN(ar1)	CN(ar1)	GIST Confirm
502	116.868874	1	MN(ar1)	CN(ar1)	GIST Data, RESERVE
503	116.868883	10	MN(ar1)	CN(ar1)	GIST Data, RESERVE

A.1.10 Handover to AR3

504	120.886695	1	MN(ar3)	HA(home:1)	MIPv6	Binding	Update
505	120.886702	17	MN(ar3)	HA(home:1)	MIPv6	Binding	Update
506	120.886921	16	MN(ar3)	HA(home:1)	MIPv6	Binding	Update
507	120.886927	15	MN(ar3)	HA(home:1)	MIPv6	Binding	Update
508	120.887230	13	MN(ar3)	HA(home:1)	MIPv6	Binding	Update
509	120.887236	4	MN(ar3)	HA(home:1)	MIPv6	Binding	Update
510	120.887307	1	MN(ar3)	CN(ar1)	MIPv6	Care-of	Test Init
511	120.887310	17	MN(ar3)	CN(ar1)	MIPv6	Care-of	Test Init
512	120.887588	16	MN(ar3)	CN(ar1)	MIPv6	Care-of	Test Init
513	120.887592	15	MN(ar3)	CN(ar1)	MIPv6	Care-of	Test Init
514	120.887826	13	MN(ar3)	CN(ar1)	MIPv6	Care-of	Test Init
515	120.887831	7	MN(ar3)	CN(ar1)	MIPv6	Care-of	Test Init
516	120.888103	8	MN(ar3)	CN(ar1)	MIPv6	Care-of	Test Init
517	120.888108	10	MN(ar3)	CN(ar1)	MIPv6	Care-of	Test Init
518	120.888779	4	HA(home:1)	MN(ar3)	MIPv6	Binding	Acknowledgement
519	120.888784	13	HA(home:1)	MN(ar3)	MIPv6	Binding	Acknowledgement
520	120.889995	15	HA(home:1)	MN(ar3)	MIPv6	Binding	Acknowledgement
521	120.890000	16	HA(home:1)	MN(ar3)	MIPv6	Binding	Acknowledgement
522	120.891269	10	CN(ar1)	MN(ar3)	MIPv6	Care-of	Test
523	120.891275	8	CN(ar1)	MN(ar3)	MIPv6	Care-of	Test
524	120.891525	7	CN(ar1)	MN(ar3)	MIPv6	Care-of	Test
525	120.891530	13	CN(ar1)	MN(ar3)	MIPv6	Care-of	Test
526	120.891824	15	CN(ar1)	MN(ar3)	MIPv6	Care-of	Test
527	120.891828	16	CN(ar1)	MN(ar3)	MIPv6	Care-of	Test
528	120.895566	17	HA(home:1)	MN(ar3)	MIPv6	Binding	Acknowledgement
529	120.895570	1	HA(home:1)	MN(ar3)	MIPv6	Binding	Acknowledgement
530	120.895600	17	CN(ar1)	MN(ar3)	MIPv6	Care-of	Test
531	120.895604	1	CN(ar1)	MN(ar3)	MIPv6	Care-of	Test
532	120.896717	1	MN(ar3)	CN(ar1)	MIPv6	Binding	Update
533	120.896721	17	MN(ar3)	CN(ar1)	MIPv6	Binding	Update
534	120.896913	16	MN(ar3)	CN(ar1)	MIPv6	Binding	Update
535	120.896918	15	MN(ar3)	CN(ar1)		Binding	-
536	120.897295	13	MN(ar3)	CN(ar1)		Binding	-
537	120.897299	7	MN(ar3)	CN(ar1)		Binding	-
538	120.897531	8	MN(ar3)	CN(ar1)		Binding	-
539	120.897535	10	MN(ar3)	CN(ar1)		Binding	-
540	120.902291	10	CN(ar1)	MN(ar3)		•	Acknowledgement
541	120.902296	8	CN(ar1)	MN(ar3)		-	Acknowledgement
						0	6

```
MN(ar3)
542 120.902569
                   7
                           CN(ar1)
                                                    MIPv6 Binding Acknowledgement
                                                    MIPv6 Binding Acknowledgement
543 120.902574
                   13
                           CN(ar1)
                                         MN(ar3)
544 120.902790
                           CN(ar1)
                                         MN(ar3)
                                                    MIPv6 Binding Acknowledgement
                   15
545 120.902794
                   16
                           CN(ar1)
                                         MN(ar3)
                                                    MIPv6 Binding Acknowledgement
546 120.902994
                           CN(ar1)
                                         MN(ar3)
                                                    MIPv6 Binding Acknowledgement
                   17
547 120.902998
                    1
                           CN(ar1)
                                         MN(ar3)
                                                    MIPv6 Binding Acknowledgement
548 120.904962
                    1
                           MN(ar3)
                                         CN(ar1)
                                                      GIST Query
    Message routing information object
        Object Header
        MRI type: 0
        Flags: 0x00
        IP version: 6
        Flags: 0x800 (P)
        Source address: MN(ar3)
        Destination address: CN(ar1)
        Source address prefix: 128
        Destination address prefix: 0
        Protocol: UDP (0x11)
549 120.904967
                                         CN(ar1)
                                                      GIST Query
                   17
                           MN(ar3)
550 120.912620
                   17
                          AR3(ar3)
                                         MN(ar3)
                                                      GIST Response
551 120.912629
                   1
                          AR3(ar3)
                                         MN(ar3)
                                                      GIST Response
552 120.914748
                   1
                           MN(ar3)
                                        AR3(ar3)
                                                      GIST Confirm
                                                      GIST Confirm
553 120.914752
                  17
                           MN(ar3)
                                        AR3(ar3)
                           MN(ar3)
                                                      GIST Data, RESERVE
554 120.914755
                   1
                                        AR3(ar3)
555 120.914759
                   17
                           MN(ar3)
                                        AR3(ar3)
                                                      GIST Data, RESERVE
556 120.927531
                   16
                        AR3(inet2)
                                         CN(ar1)
                                                      GIST Query
                        AR3(inet2)
557 120.927539
                   15
                                         CN(ar1)
                                                      GIST Query
558 120.929247
                   15
                        AR2(inet2)
                                      AR3(inet2)
                                                      GIST Response
559 120.929251
                                                      GIST Response
                   16
                        AR2(inet2)
                                      AR3(inet2)
560 120.930160
                                      AR2(inet2)
                                                      GIST Confirm
                   16
                        AR3(inet2)
561 120.930165
                   15
                        AR3(inet2)
                                      AR2(inet2)
                                                      GIST Confirm
562 120.930673
                   16
                        AR3(inet2)
                                      AR2(inet2)
                                                      GIST Data, RESERVE
563 120.930677
                        AR3(inet2)
                                     AR2(inet2)
                                                      GIST Data, RESERVE
                   15
                                                      GIST Query
564 120.932780
                   13
                         AR2(inet)
                                         CN(ar1)
565 120.932789
                   7
                         AR2(inet)
                                         CN(ar1)
                                                      GIST Query
566 120.934351
                   7
                         AR1(inet)
                                       AR2(inet)
                                                      GIST Response
567 120.934357
                   13
                         AR1(inet)
                                       AR2(inet)
                                                      GIST Response
                                                      GIST Confirm
568 120.935059
                   13
                         AR2(inet)
                                       AR1(inet)
569 120.935064
                   7
                         AR2(inet)
                                       AR1(inet)
                                                     GIST Confirm
570 120.935567
                   13
                         AR2(inet)
                                       AR1(inet)
                                                      GIST Data, RESERVE
571 120.935572
                                                      GIST Data, RESERVE
                    7
                         AR2(inet)
                                       AR1(inet)
572 120.937635
                          AR1(ar1)
                                         CN(ar1)
                    8
                                                      GIST Query
573 120.937643
                          AR1(ar1)
                                         CN(ar1)
                   10
                                                      GIST Query
574 120.944490
                   10
                           CN(ar1)
                                        AR1(ar1)
                                                      GIST Response
575 120.944495
                    8
                           CN(ar1)
                                        AR1(ar1)
                                                      GIST Response
576 120.945340
                                         CN(ar1)
                                                      GIST Confirm
                    8
                          AR1(ar1)
577 120.945345
                   10
                          AR1(ar1)
                                         CN(ar1)
                                                      GIST Confirm
578 120.945950
                                         CN(ar1)
                                                      GIST Data, RESERVE
                    8
                          AR1(ar1)
                                                      GIST Data, RESERVE
579 120.945954
                   10
                          AR1(ar1)
                                         CN(ar1)
                                                      GIST Data, NOTIFY*
580 120.948065
                   10
                           CN(ar1)
                                         MN(ar1)
                                                      GIST Data, NOTIFY*
581 120.948072
                   8
                           CN(ar1)
                                         MN(ar1)
582 120.948719
                   10
                           CN(ar1)
                                        AR1(ar1)
                                                      GIST Data, RESPONSE
583 120.948723
                    8
                           CN(ar1)
                                        AR1(ar1)
                                                      GIST Data, RESPONSE
584 120.950655
                   7
                                       AR2(inet)
                                                      GIST Data, RESPONSE
                         AR1(inet)
                                                      GIST Data, RESPONSE
585 120.950662
                   13
                         AR1(inet)
                                       AR2(inet)
586 120.951963
                                                      GIST Data, RESPONSE
                   15
                        AR2(inet2)
                                      AR3(inet2)
587 120.951970
                        AR2(inet2)
                                                      GIST Data, RESPONSE
                   16
                                      AR3(inet2)
```

588 120.953182	17	AR3(ar3)	MN(ar3)	GIST Data, RESPONSE
589 120.953188	1	AR3(ar3)	MN(ar3)	GIST Data, RESPONSE

A.1.11 At AR3: Hop-to-Hop Refreshes

590) 122.193388	16	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
591	l 122.193398	15	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
592	2 124.514812	8	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
593	3 124.514829	10	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
594	1 124.869140	1	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
595	5 124.869146	17	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
596	5 126.429253	13	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
597	7 126.429264	7	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
598	3 126.515701	8	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
599	9 126.515710	10	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
600) 128.195220	16	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
601	l 128.195231	15	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
602	2 129.870072	1	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
603	3 129.870083	17	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
604	130.850796	16	AR3(inet2)	CN(ar1)	GIST	Query
605	5 130.850804	15	AR3(inet2)	CN(ar1)	GIST	Query
606	5 130.851802	15	AR2(inet2)	AR3(inet2)	GIST	Response
607	7 130.851807	16	AR2(inet2)	AR3(inet2)	GIST	Response
608	3 130.852435	16	AR3(inet2)	AR2(inet2)		Confirm
609	9 130.852440	15	AR3(inet2)	AR2(inet2)	GIST	Confirm
610) 132.195752	16	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
611	L 132.195760	15	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
612	2 132.430778	13	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
613	3 132.430787	7	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
614	133.516253	8	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
615	5 133.516260	10	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
616	6 133.870628	1	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
617	7 133.870635	17	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
618	3 134.027269	1	MN(ar3)	CN(ar1)	GIST	Query
619	9 134.027278	17	MN(ar3)	CN(ar1)	GIST	Query
620) 134.027921	17	AR3(ar3)	MN(ar3)	GIST	Response
621	l 134.027926	1	AR3(ar3)	MN(ar3)	GIST	Response
622	2 134.029268	1	MN(ar3)	AR3(ar3)	GIST	Confirm
623	3 134.029274	17	MN(ar3)	AR3(ar3)	GIST	Confirm
624	136.195834	16	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
625	5 136.195845	15	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
626	3 136.430623	13	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
627	7 136.430632	7	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
628	3 136.518941	8	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
629	9 136.518951	10	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
630) 137.195104	16	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
631	l 137.195114	15	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
632	2 137.872808	1	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
633	3 137.872817	17	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
634	139.451494	16	AR3(inet2)	CN(ar1)	GIST	Query
635	5 139.451502	15	AR3(inet2)	CN(ar1)	GIST	Query
	5 139.452416	15	AR2(inet2)	AR3(inet2)		Response
637	7 139.452421	16	AR2(inet2)	AR3(inet2)	GIST	Response
	3 139.454590	16	AR3(inet2)	AR2(inet2)		Confirm
	9 139.454596	15	AR3(inet2)	AR2(inet2)		Confirm
	0 140.196006	16	AR3(inet2)			Data, RESERVE
	l 140.196017	15	AR3(inet2)	AR2(inet2)		Data, RESERVE
642	2 140.517827	8	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE

643	140.517835	10	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
644	140.615136	8	AR1(ar1)	CN(ar1)	GIST	Query
645	140.615142	10	AR1(ar1)	CN(ar1)	GIST	Query
646	140.616158	10	CN(ar1)	AR1(ar1)	GIST	Response
647	140.616162	8	CN(ar1)	AR1(ar1)	GIST	Response
648	140.616824	8	AR1(ar1)	CN(ar1)	GIST	Confirm
649	140.616828	10	AR1(ar1)	CN(ar1)	GIST	Confirm
650	140.871942	1	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
651	140.871950	17	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
652	141.430734	13	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
653	141.430743	7	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
654	143.253023	13	AR2(inet)	CN(ar1)	GIST	Query
655	143.253034	7	AR2(inet)	CN(ar1)	GIST	Query
656	143.254516	7	AR1(inet)	AR2(inet)	GIST	Response
657	143.254523	13	AR1(inet)	AR2(inet)	GIST	Response
658	143.255250	13	AR2(inet)	AR1(inet)	GIST	Confirm
659	143.255255	7	AR2(inet)	AR1(inet)	GIST	Confirm
660	143.518805	8	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
661	143.518810	10	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
662	144.196282	16	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
663	144.196295	15	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
664	144.872251	1	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
665	144.872263	17	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
666	146.517653	8	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
667	146.517663	10	AR1(ar1)	CN(ar1)	GIST	Data, RESERVE
668	147.196696	16	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
669	147.196705	15	AR3(inet2)	AR2(inet2)	GIST	Data, RESERVE
670	147.432894	13	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
671	147.432905	7	AR2(inet)	AR1(inet)	GIST	Data, RESERVE
672	148.872871	1	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE
673	148.872879	5	MN(ar3)	AR3(ar3)	GIST	Data, RESERVE

A.1.12 Handover Back Home

674	149.313293	1	MN(home)	HA(home:1)	MIPv6	Binding	Update		
675	149.313299	5	MN(home)	HA(home:1)	MIPv6	Binding	Update		
676	149.545296	5	HA(home:1)	MN(home)	MIPv6	Binding	Acknowledgement		
677	149.545301	1	HA(home:1)	MN(home)	MIPv6	Binding	Acknowledgement		
678	149.546457	1	MN(home)	CN(ar1)	MIPv6	Binding	Update		
679	149.546463	5	MN(home)	CN(ar1)	MIPv6	Binding	Update		
680	149.546663	4	MN(home)	CN(ar1)	MIPv6	Binding	Update		
681	149.546670	7	MN(home)	CN(ar1)	MIPv6	Binding	Update		
682	149.547009	8	MN(home)	CN(ar1)	MIPv6	Binding	Update		
683	149.547015	10	MN(home)	CN(ar1)	MIPv6	Binding	Update		
684	149.547683	10	CN(ar1)	MN(home)	MIPv6	Binding	Acknowledgement		
685	149.547688	8	CN(ar1)	MN(home)	MIPv6	Binding	Acknowledgement		
686	149.547857	7	CN(ar1)	MN(home)	MIPv6	Binding	Acknowledgement		
687	149.547861	4	CN(ar1)	MN(home)	MIPv6	Binding	Acknowledgement		
688	149.548143	5	CN(ar1)	MN(home)	MIPv6	Binding	Acknowledgement		
689	149.548148	1	CN(ar1)	MN(home)	MIPv6	Binding	Acknowledgement		
690	149.550009	1	MN(home)	CN(ar1)	GIST	Query			
	Message rou	ting inf	ormation ob	ject					
	Object	Header		-					
	MRI type: 0								
	Flags: 0x00								
	IP version: 6								
	Flags:	0x800 (F)						

So	urce address	s: MN(home)					
Dea	stination ad	ddress: CN(ar	:1)				
So	Source address prefix: 128						
Dea	stination ad	ddress prefix	c: 0				
Pro	otocol: UDP	(0x11)					
691 149.55	0014 5	MN(home)	CN(ar1)	GIST	Query		
692 149.55	1529 5	HA(home:2)	MN(home)	GIST	Respons	se	
693 149.55	1534 1	HA(home:2)	MN(home)	GIST	Respons	se	
694 149.55	5064 1	MN(home)	HA(home:2)	GIST	Confirm	m	
695 149.55	6068 5	MN(home)	HA(home:2)	GIST	Confirm	m	
696 149.56	2307 1	MN(home)	HA(home:2)	GIST	Data, 1	RESERVE	
697 149.56	2315 5	MN(home)	HA(home:2)	GIST	Data, 1	RESERVE	
698 149.56	5408 4	HA(inet)	CN(ar1)	GIST	Query		
699 149.56	5417 7	HA(inet)	CN(ar1)		Query		
700 149.56	6814 7	AR1(inet)	HA(inet)	GIST	Respons	se	
701 149.56	6819 4	AR1(inet)	HA(inet)	GIST	Respons	se	
702 149.568	3494 4	HA(inet)	AR1(inet)	GIST	Confirm	m	
703 149.568	3501 7	HA(inet)	AR1(inet)	GIST	Confirm	m	
704 149.569	9613 4	HA(inet)	AR1(inet)	GIST	Data, 1	RESERVE	
705 149.569	9618 7	HA(inet)	AR1(inet)	GIST	Data, 1	RESERVE	
706 149.57	1072 7	AR1(inet)	AR2(inet)	GIST	Data, 1	NOTIFY*	
707 149.57	1080 13	AR1(inet)	AR2(inet)	GIST	Data, 1	NOTIFY*	
708 149.57	1881 8	AR1(ar1)	CN(ar1)	GIST	Query		
709 149.57	1887 10	AR1(ar1)	CN(ar1)		Query		
710 149.573	3437 15	AR2(inet2)	AR3(inet2)	GIST	Data, 1	NOTIFY*	
711 149.573	3444 16	AR2(inet2)	AR3(inet2)	GIST	Data, 1	NOTIFY*	
712 149.57	5027 17	AR3(ar3)	MN(ar3)	GIST	Data, 1	NOTIFY*	
713 149.57	6143 10	CN(ar1)	AR1(ar1)	GIST	Respons	se	
714 149.57		CN(ar1)	AR1(ar1)	GIST	Respons	se	
715 149.57	7004 8	AR1(ar1)	CN(ar1)	GIST	Confirm	m	
716 149.57	7009 10	AR1(ar1)	CN(ar1)	GIST	Confirm	m	
717 149.57		AR1(ar1)	CN(ar1)	GIST	Data, 1	RESERVE	
718 149.57	7501 10	AR1(ar1)	CN(ar1)	GIST	Data, 1	RESERVE	
719 149.579	9884 10	CN(ar1)	AR1(ar1)			RESPONSE	
720 149.579		CN(ar1)	AR1(ar1)	GIST	Data, 1	RESPONSE	
721 149.58	1025 7	AR1(inet)	HA(inet)	GIST	Data, 1	RESPONSE	
722 149.58	1030 4	AR1(inet)	HA(inet)	GIST	Data, 1	RESPONSE	
723 149.58	2750 5	HA(home:2)	MN(home)	GIST	Data, 1	RESPONSE	
724 149.58	2755 1	HA(home:2)	MN(home)	GIST	Data, 1	RESPONSE	

A.1.13 At Home: Hop-to-Hop Refreshes for old and new path

725	150.431674	13	AR2(inet)	AR1(inet)	GIST Data, RESERVE*
726	150.431683	7	AR2(inet)	AR1(inet)	GIST Data, RESERVE*
727	150.518274	8	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
728	150.518288	10	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
729	150.926856	8	AR1(ar1)	CN(ar1)	GIST Query
730	150.926866	10	AR1(ar1)	CN(ar1)	GIST Query
731	150.927714	10	CN(ar1)	AR1(ar1)	GIST Response
732	150.927720	8	CN(ar1)	AR1(ar1)	GIST Response
733	150.928554	8	AR1(ar1)	CN(ar1)	GIST Confirm
734	150.928559	10	AR1(ar1)	CN(ar1)	GIST Confirm
735	151.397536	13	AR2(inet)	CN(ar1)	GIST Query*
736	151.397548	7	AR2(inet)	CN(ar1)	GIST Query*
737	151.398517	7	AR1(inet)	AR2(inet)	GIST Response*
738	151.398522	13	AR1(inet)	AR2(inet)	GIST Response*
739	151.399105	13	AR2(inet)	AR1(inet)	GIST Confirm*

	_			
740 151.399109	7	AR2(inet)	AR1(inet)	GIST Confirm*
741 152.935746	4	HA(inet)	AR1(inet)	GIST Data, RESERVE
742 152.935755	7	HA(inet)	AR1(inet)	GIST Data, RESERVE
743 153.197688	16	AR3(inet2)	AR2(inet2)	GIST Data, RESERVE*
744 153.197700	15	AR3(inet2)	AR2(inet2)	GIST Data, RESERVE*
745 153.873761	1	MN(home)	HA(home:2)	GIST Data, RESERVE
746 153.873770	5	MN(home)	HA(home:2)	GIST Data, RESERVE
747 154.520418	8	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
748 154.520426	10	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
749 156.432765	13	AR2(inet)	AR1(inet)	GIST Data, RESERVE*
750 156.432777	7	AR2(inet)	AR1(inet)	GIST Data, RESERVE*
751 156.874249	1	MN(home)	HA(home:2)	GIST Data, RESERVE
752 156.874266	5	MN(home)	HA(home:2)	GIST Data, RESERVE
753 157.609204	16	AR3(inet2)	CN(ar1)	GIST Query*
754 157.609213	15	AR3(inet2)	CN(ar1)	GIST Query*
755 157.611185	15	AR2(inet2)	AR3(inet2)	GIST Response*
756 157.611191	16	AR2(inet2)	AR3(inet2)	GIST Response*
757 157.612519	16	AR3(inet2)	AR2(inet2)	GIST Confirm*
758 157.612523	15	AR3(inet2)	AR2(inet2)	GIST Confirm*
759 157.937328	4	HA(inet)	AR1(inet)	GIST Data, RESERVE
760 157.937339	7	HA(inet)	AR1(inet)	GIST Data, RESERVE
761 158.198625	16	AR3(inet2)	AR2(inet2)	GIST Data, RESERVE*
762 158.198633	15	AR3(inet2)	AR2(inet2)	GIST Data, RESERVE*
763 158.480745	4	HA(inet)	CN(ar1)	GIST Query
764 158.480755	7	HA(inet)	CN(ar1)	GIST Query
765 158.481836	7	AR1(inet)	HA(inet)	GIST Response
766 158.481841	4	AR1(inet)	HA(inet)	GIST Response
767 158.483784	4	HA(inet)	AR1(inet)	GIST Confirm
768 158.483790	7	HA(inet)	AR1(inet)	GIST Confirm
769 158.993960	8	AR1(ar1)	CN(ar1)	GIST Query
770 158.993965	10	AR1(ar1)	CN(ar1)	GIST Query
771 158.994809	10	CN(ar1)	AR1(ar1)	GIST Response
772 158.994815	8	CN(ar1)	AR1(ar1)	GIST Response
773 158.995529	8	AR1(ar1)	CN(ar1)	GIST Confirm
774 158.995534	10	AR1(ar1)	CN(ar1)	GIST Confirm
775 159.937120	4	HA(inet)	AR1(inet)	GIST Data, RESERVE
776 159.937128	7	HA(inet)	AR1(inet)	GIST Data, RESERVE
777 160.433218	13	AR2(inet)	AR1(inet)	GIST Data, RESERVE
778 160.433227	7	AR2(inet)	AR1(inet)	GIST Data, RESERVE
779 160.505155	8	AR1(ar1)	CN(ar1)	GIST Query
780 160.505164	10	AR1(ar1)	CN(ar1)	GIST Query
781 160.506073	10	CN(ar1)	AR1(ar1)	GIST Response
782 160.506078	8	CN(ar1)	AR1(ar1)	GIST Response
783 160.506789	8	AR1(ar1)	CN(ar1)	GIST Confirm
784 160.506795	10	AR1(ar1)	CN(ar1)	GIST Confirm
785 160.876551	10	MN(home)	HA(home:2)	GIST Data, RESERVE
786 160.876556	1 5	MN(home)	HA(home:2)	GIST Data, RESERVE
787 161.519684	5 8	AR1(ar1)	CN(ar1)	GIST Data, RESERVE
			CN(arl) CN(arl)	
788 161.519690	10	AR1(ar1)		GIST Data, RESERVE
789 163.875027	1	MN(home)	HA(home:2)	GIST Data, RESERVE
790 163.875035	5	MN(home)	HA(home:2)	GIST Data, RESERVE

A.1.14 At Home: Old Path Teardown

791	164.036339	16	AR3(inet2)	AR2(inet2)	GIST Data,	RESERVE(TEAR)*
792	164.036347	15	AR3(inet2)	AR2(inet2)	GIST Data,	RESERVE(TEAR)*
793	164.037754	13	AR2(inet)	AR1(inet)	GIST Data,	RESERVE(TEAR)*
794	164.037762	7	AR2(inet)	AR1(inet)	GIST Data,	RESERVE(TEAR)*

			_	_		
795	165.937370	4	HA(inet)	AR1(inet)	GIST Data,	RESERVE
796	165.937379	7	HA(inet)	AR1(inet)	GIST Data,	RESERVE
797	166.521201	8	AR1(ar1)	CN(ar1)	GIST Data,	RESERVE
798	166.521207	10	AR1(ar1)	CN(ar1)	GIST Data,	RESERVE
799	166.875146	1	MN(home)	HA(home:2)	GIST Data,	RESERVE
800	166.875154	5	MN(home)	HA(home:2)	GIST Data,	RESERVE
801	168.875961	1	MN(home)	HA(home:2)	GIST Data,	RESERVE
802	168.875970	5	MN(home)	HA(home:2)	GIST Data,	RESERVE
803	168.917834	1	MN(home)	CN(ar1)	GIST Query	
804	168.917839	5	MN(home)	CN(ar1)	GIST Query	
805	168.918854	5	HA(home:2)	MN(home)	GIST Respo	nse
806	168.918858	1	HA(home:2)	MN(home)	GIST Respo	nse
807	168.920841	1	MN(home)	HA(home:2)	GIST Confi	rm
808	168.920847	5	MN(home)	HA(home:2)	GIST Confi	rm
809	170.279245	4	HA(inet)	CN(ar1)	GIST Query	
810	170.279256	7	HA(inet)	CN(ar1)	GIST Query	
811	170.280285	7	AR1(inet)	HA(inet)	GIST Respo	nse
812	170.280311	4	AR1(inet)	HA(inet)	GIST Respo	nse
813	170.281300	4	HA(inet)	AR1(inet)	GIST Confi	rm
814	170.281305	7	HA(inet)	AR1(inet)	GIST Confi	rm
815	170.521784	8	AR1(ar1)	CN(ar1)	GIST Data,	RESERVE
816	170.521789	10	AR1(ar1)	CN(ar1)	GIST Data,	RESERVE
817	170.903694	8	AR1(ar1)	CN(ar1)	GIST Query	
818	170.903704	10	AR1(ar1)	CN(ar1)	GIST Query	
819	170.904371	10	CN(ar1)	AR1(ar1)	GIST Respo	nse
820	170.904377	8	CN(ar1)	AR1(ar1)	GIST Respo	nse
821	170.905391	8	AR1(ar1)	CN(ar1)	GIST Confi	rm
822	170.905397	10	AR1(ar1)	CN(ar1)	GIST Confi	rm
823	170.939856	4	HA(inet)	AR1(inet)	GIST Data,	RESERVE
824	170.939866	7	HA(inet)	AR1(inet)	GIST Data,	RESERVE
825	171.875745	1	MN(home)	HA(home:2)	GIST Data,	RESERVE
826	171.875756	5	MN(home)	HA(home:2)	GIST Data,	RESERVE

A.1.15 At Home: Hop-To-Hop Refreshes

A.2 CN Sender in Sender-Initiated Mode

No.	Time	VLAN	Source	Destination	Protocol	Info		
1	0.000000	1	MN(ar1)	HA(home:1)	MIPv6	Binding	Update	
2	0.000006	8	MN(ar1)	HA(home:1)	MIPv6	Binding	Update	
3	0.000240	7	MN(ar1)	HA(home:1)	MIPv6	Binding	Update	
4	0.000246	4	MN(ar1)	HA(home:1)	MIPv6	Binding	Update	
5	0.007467	4	HA(home:1)	MN(ar1)	MIPv6	Binding	Acknowledgement	
6	0.007476	7	HA(home:1)	MN(ar1)	MIPv6	Binding	Acknowledgement	
7	0.008985	1	MN(ar1)	CN(ar1)	MIPv6	Care-of	Test Init	
8	0.008990	10	MN(ar1)	CN(ar1)	MIPv6	Care-of	Test Init	
9	0.009368	10	CN(ar1)	MN(ar1)	MIPv6	Care-of	Test	
10	0.009372	1	CN(ar1)	MN(ar1)	MIPv6	Care-of	Test	
11	0.009928	1	MN(ar1)	CN(ar1)	MIPv6	Binding	Update	
12	0.009932	10	MN(ar1)	CN(ar1)	MIPv6	Binding	Update	
13	0.011996	8	HA(home:1)	MN(ar1)	MIPv6	Binding	Acknowledgement	
14	0.012001	1	HA(home:1)	MN(ar1)	MIPv6	Binding	Acknowledgement	
15	0.013069	10	CN(ar1)	MN(ar1)	MIPv6	Binding	Acknowledgement	
16	0.013073	1	CN(ar1)	MN(ar1)	MIPv6	Binding	Acknowledgement	
17	0.014397	10	CN(ar1)	MN(ar1)	GIST	Query		
Message routing information object								
Object Header								
	MRI typ	e: 0						

```
Flags: 0x00
       IP version: 6
       Flags: 0x800 (P)
       Source address: CN(ar1)
       Destination address: MN(ar1)
       Source address prefix: 0
       Destination address prefix: 128
       Protocol: UDP (0x11)
                                      MN(ar1)
18
    0.014402
                 1
                         CN(ar1)
                                                   GIST Query
    0.015725
                  1
                         MN(ar1)
                                      CN(ar1)
                                                   GIST Response
19
20
    0.015730
                 10
                         MN(ar1)
                                      CN(ar1)
                                                  GIST Response
21
    0.016280
                 10
                         CN(ar1)
                                      MN(ar1)
                                                  GIST Confirm
22
                         CN(ar1)
                                      MN(ar1)
                                                  GIST Confirm
    0.016284
                 1
23
                                      MN(ar1)
                                                  GIST Data, RESERVE
    0.016774
                 10
                         CN(ar1)
24
    0.016778
                  1
                         CN(ar1)
                                      MN(ar1)
                                                  GIST Data, RESERVE
25
    0.020173
                  1
                         MN(ar1)
                                      CN(ar1)
                                                  GIST Data, RESPONSE
                                                  GIST Data, RESPONSE
26
    0.020178
                 10
                         MN(ar1)
                                      CN(ar1)
27
     0.022317
                 10
                         CN(ar1)
                                     AR1(ar1)
                                                   GIST Data, RESERVE(TEAR)*
   Message routing information object
       Object Header
       MRI type: 0
       Flags: 0x00
       IP version: 6
       Flags: 0x800 (P)
       Source address: CN(ar1)
       Destination address: MN(ar3)
       Source address prefix: 0
       Destination address prefix: 128
       Protocol: UDP (0x11)
28
     0.022321
                  8
                         CN(ar1)
                                     AR1(ar1)
                                                   GIST Data, RESERVE(TEAR)*
    0.023921
                  7
29
                       AR1(inet)
                                    AR2(inet)
                                                  GIST Data, RESERVE(TEAR)*
30
    0.023927
                 13
                      AR1(inet)
                                    AR2(inet)
                                                  GIST Data, RESERVE(TEAR)*
31
    0.025681
                 15
                      AR2(inet2)
                                   AR3(inet2)
                                                  GIST Data, RESERVE(TEAR)*
32
    0.025687
                 16
                      AR2(inet2)
                                   AR3(inet2)
                                                  GIST Data, RESERVE(TEAR)*
```

B. Setup and Tear Down Delay Benchmarks

The following are our raw benchmark numbers which are discussed in Chapter 5.3. First the raw numbers are given, including numbers we excluded as obvious outliers—marked as such. After the raw numbers we provide a histogram of the numbers including average and median, as well as the 95% confidence interval around the average.

B.1 Benchmarks Without Addition Delay

B.1.1 MN Sender, Sender-Initiated, No Delay

Setup Delay while at AR1:

0.012521, 0.009143, 0.010928, 0.013858, 0.012173, 0.012331, 0.015062, 0.010738, 0.011922, 0.017683, 0.010704, 0.013266, 0.009454, 0.012740, 0.007646, 0.008531, 0.013782, 0.012146, 0.008302, 0.014122, 0.012801, 0.013521, 0.013790, 0.010516, 0.011789, 0.013931, 0.011730, 0.014942, 0.013180, 0.007619, 0.009976, 0.011400, 0.010292, 0.015530, 0.008344, 0.013945, 0.017290, 0.011503, 0.007794, 0.009785, 0.017947, 0.009425, 0.012117, 0.011475, 0.008066, 0.008284, 0.009512, 0.008195, 0.018135, 0.008672

Setup Delay while at AR2:

0.025336, 0.026539, 0.030141, 0.031318, 0.032964, 0.021357, 0.028135, 0.022956, 0.030324, 0.022137, 0.023677, 0.027229, 0.023376, 0.024132, 0.028300, 0.029050, 0.019873, 0.025698, 0.021219, 0.024512, 0.029313, 0.039701, 0.022520, 0.039862, 0.027717, 0.028368, 0.026117, 0.021549, 0.024430, 0.030177, 0.024320, 0.021799, 0.030035, 0.020860, 0.027445, 0.041659, 0.032121, 0.028745, 0.032162, 0.025273, 0.032387, 0.024038, 0.027651, 0.028118, 0.025764, 0.020314, 0.023885, 0.032253, 0.023943, 0.029257

Setup Delay while at AR3:

0.038579, 0.036650, 0.039657, 0.034525, 0.037392, 0.030402, 0.037518, 0.039047, 0.041655, 0.031069, 0.034970, 0.035416, 0.044039, 0.038308, 0.044912, 0.032244, 0.031085, 0.039961, 0.041250, 0.031753, 0.047994, 0.045269, 0.048476, 0.032436, 0.032346, 0.032701, 0.034016, 0.045418, 0.043951, 0.037546, 0.035939, 0.028038, 0.030356, 0.029002, 0.044163, 0.041439, 0.044517, 0.037571, 0.031181, 0.028760, 0.040765, 0.035363, 0.046820, 0.032099, 0.041736, 0.044093, 0.031336, 0.049597, 0.035668 Dutliers: 0.076472

Tear Down Delay (AR2, AR3):

26.742899, 23.710220, 23.548284, 20.978137, 14.682111, 14.549829, 20.704293, 19.959679, 14.345056, 22.779567, 18.524552, 14.563954, 9.959447, 28.542556, 13.331614, 16.345001, 20.918251, 28.621168, 20.613619, 20.266983, 16.554355, 15.371855, 23.479298, 18.019118, 26.489390, 21.158070, 12.501308, 22.567096, 13.852113, 10.925003, 21.516176, 25.155244, 19.973963 Outliers: 8.058581, 8.341470

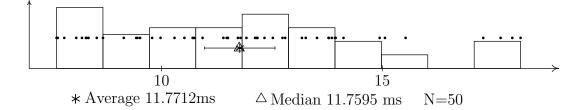


Figure B.1: Setup Delay on AR1

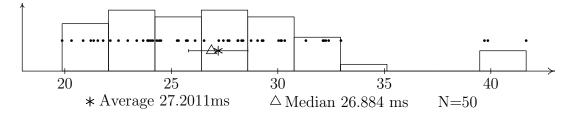


Figure B.2: Setup Delay on AR2

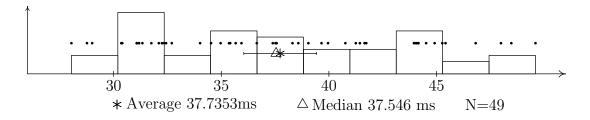


Figure B.3: Setup Delay on AR3

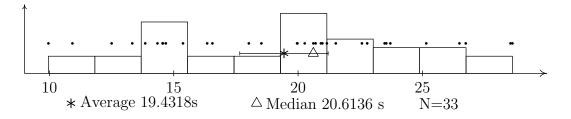


Figure B.4: Tear Down Delay

B.1.2 CN Sender, Sender-Initiated, No Delay

Setup Delay while at AR1:

0.013853, 0.013677, 0.008620, 0.018207, 0.014526, 0.013480, 0.011170, 0.018370, 0.011591, 0.012736, 0.011014, 0.016108, 0.012986, 0.011952, 0.017079, 0.014406, 0.013915, 0.014064, 0.016561, 0.015510, 0.013561, 0.008973, 0.013743, 0.010331, 0.012718, 0.012584, 0.016503, 0.010726, 0.009696, 0.014255, 0.010222, 0.009381, 0.011402, 0.017715, 0.011404, 0.014891, 0.013077, 0.019733, 0.008017, 0.009934, 0.009822, 0.012948, 0.017281, 0.013277, 0.010652, 0.013364, 0.013417, 0.010499, 0.016301, 0.014927

Setup Delay while at AR2:

0.027436, 0.024706, 0.022963, 0.024295, 0.027411, 0.029320, 0.025256, 0.029543, 0.026114, 0.030737, 0.030648, 0.026370, 0.026736, 0.022031, 0.024890, 0.026803, 0.043281, 0.031497, 0.024593, 0.032592, 0.024908, 0.029950, 0.023932, 0.026164, 0.032924, 0.026957, 0.030544, 0.030144, 0.042098, 0.028132, 0.021989, 0.030204, 0.030728, 0.026715, 0.029466, 0.027129, 0.027927, 0.025110, 0.020873, 0.036279, 0.024636, 0.031318, 0.022925, 0.027564, 0.028313, 0.023412, 0.032547, 0.026641, 0.024771 Dutliers: 0.050248

Setup Delay while at AR3:

0.045429, 0.033002, 0.040301, 0.043696, 0.038313, 0.054775, 0.047530, 0.040652, 0.047775, 0.037338, 0.035374, 0.035397, 0.050548, 0.045884, 0.034726, 0.036977, 0.039434, 0.037811, 0.050202, 0.041492, 0.034667, 0.034128, 0.045941, 0.037122, 0.044108, 0.037110, 0.043798, 0.050324, 0.045102, 0.039150, 0.033119, 0.038543, 0.036980, 0.036103, 0.038706, 0.060334, 0.036440, 0.045945, 0.038366, 0.031133, 0.049726, 0.044151, 0.033910, 0.037396, 0.044054, 0.044486, 0.047568, 0.035084, 0.048270 Dutliers: 0.137320

Tear Down Delay (AR2, AR3):

0.025797, 0.024459, 0.022863, 0.023722, 0.024853, 0.028117, 0.025109, 0.028199, 0.023646, 0.029961, 0.028349, 0.026780, 0.026984, 0.019619, 0.023016, 0.026968, 0.039827, 0.031904, 0.023267, 0.032040, 0.024094, 0.029495, 0.023620, 0.026103, 0.032388, 0.027057, 0.028090, 0.029673, 0.039514, 0.025409, 0.021595, 0.028975, 0.027693, 0.024802, 0.029138, 0.023688, 0.027794, 0.024176, 0.019784, 0.034716, 0.022574, 0.028327, 0.022687, 0.024761, 0.027833, 0.023617, 0.029052, 0.026066, 0.023980 Dutliers: 0.048519

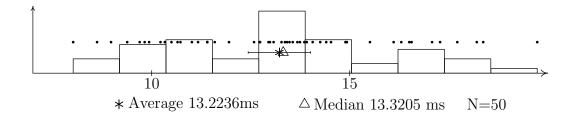


Figure B.5: Setup Delay on AR1

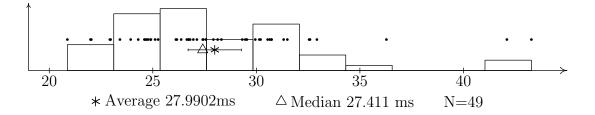


Figure B.6: Setup Delay on AR2

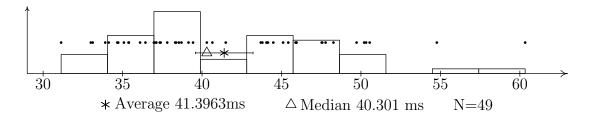


Figure B.7: Setup Delay on AR3



Figure B.8: Tear Down Delay

B.1.3 MN Sender, Reciever-Initiated, No Delay

Setup Delay while at AR1:

0.009549, 0.013223, 0.013150, 0.016289, 0.011553, 0.011085, 0.017727, 0.009088, 0.017577, 0.016956, 0.008835, 0.007393, 0.013013, 0.013031, 0.014285, 0.009041, 0.014385, 0.009794, 0.009203, 0.010453, 0.011043, 0.008841, 0.011008, 0.014319, 0.014357, 0.016801, 0.010070, 0.009354, 0.013038, 0.012135, 0.010948, 0.009626, 0.010224, 0.013657, 0.012124, 0.009211, 0.011103, 0.012148, 0.013222, 0.009515, 0.013026, 0.012334, 0.010464, 0.014167, 0.018161, 0.008273, 0.010073, 0.010098

Setup Delay while at AR2:

0.023616, 0.026303, 0.030743, 0.028876, 0.029239, 0.033295, 0.026816, 0.027549, 0.038333, 0.027046, 0.027339, 0.029271, 0.028983, 0.026786, 0.028789, 0.032618, 0.034650, 0.028434, 0.030747, 0.025382, 0.028822, 0.028896, 0.032336, 0.032947, 0.026064, 0.026344, 0.037159, 0.026355, 0.039783, 0.030619, 0.026919, 0.028398, 0.028936, 0.036387, 0.025703, 0.042426, 0.029747, 0.028705, 0.030151, 0.034197, 0.037016, 0.039741, 0.027395, 0.037813, 0.030815, 0.036808, 0.028559, 0.028070

Setup Delay while at AR3:

0.047586, 0.042326, 0.039712, 0.040412, 0.038627, 0.049030, 0.076126, 0.052299, 0.037177, 0.044387, 0.040145, 0.047906, 0.039705, 0.036267, 0.036380, 0.046564, 0.039302, 0.041355, 0.040041, 0.052149, 0.034855, 0.050681, 0.041220, 0.046398, 0.043192, 0.044084, 0.036491, 0.043129, 0.037386, 0.045907, 0.041980, 0.046706, 0.041291, 0.055113, 0.042117, 0.043042, 0.047064, 0.045692, 0.038936, 0.045215, 0.063507, 0.035519, 0.039352, 0.044536, 0.039163, 0.051235, 0.052225

Tear Down Delay (AR2, AR3):

0.022983, 0.025580, 0.030420, 0.026824, 0.027970, 0.033298, 0.026484, 0.027166, 0.035942, 0.026116, 0.027126, 0.026535, 0.027986, 0.026269, 0.028043, 0.032122, 0.027003, 0.027674, 0.030485, 0.024962, 0.028490, 0.028078, 0.032100, 0.033016, 0.023047, 0.026350, 0.035900, 0.025987, 0.037160, 0.029716, 0.026517, 0.027396, 0.027347, 0.035347, 0.025599, 0.041065, 0.029011, 0.026391, 0.029411, 0.034230, 0.036853, 0.033686, 0.027822, 0.031134, 0.030301, 0.036525, 0.028194, 0.027517

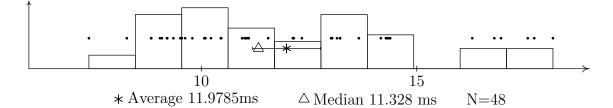


Figure B.9: Setup Delay on AR1

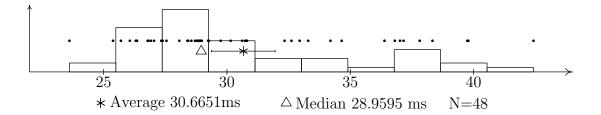


Figure B.10: Setup Delay on AR2

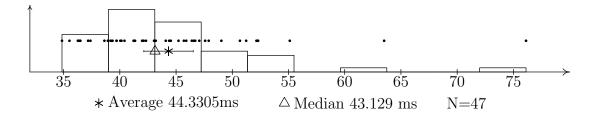


Figure B.11: Setup Delay on AR3

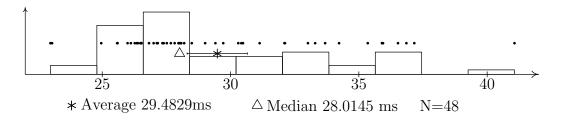


Figure B.12: Tear Down Delay

B.1.4 CN Sender, Reciever-Initiated, No Delay

Setup Delay while at AR1:

0.010294, 0.017332, 0.012004, 0.012379, 0.013701, 0.014845, 0.010394, 0.013158, 0.011129, 0.015902, 0.016299, 0.010298, 0.020515, 0.009975, 0.011348, 0.010209, 0.010694, 0.014203, 0.019553, 0.015132, 0.019320, 0.021090, 0.014132, 0.009980, 0.017118, 0.013048, 0.014840, 0.009378, 0.014087, 0.011098, 0.023312, 0.011660, 0.010581, 0.010888, 0.012914, 0.009750, 0.012491, 0.011651, 0.015257, 0.010296, 0.013901, 0.009644, 0.010009, 0.011484, 0.009504, 0.009691, 0.015895, 0.008953, 0.014638 Dutliers: 0.032293

Setup Delay while at AR2:

0.028894, 0.030356, 0.036248, 0.029475, 0.028105, 0.035612, 0.038178, 0.030577, 0.027729, 0.039643, 0.036938, 0.035944, 0.034448, 0.039552, 0.034640, 0.028093, 0.029647, 0.042444, 0.029197, 0.031488, 0.034024, 0.036046, 0.034787, 0.035417, 0.038291, 0.045247, 0.032693, 0.026415, 0.034683, 0.031466, 0.030707, 0.031561, 0.026901, 0.031366, 0.033734, 0.038634, 0.039605, 0.034822, 0.028109, 0.034923, 0.030162, 0.034663, 0.040779, 0.032853, 0.033013, 0.027059, 0.033433, 0.031692, 0.033372, 0.031311

Setup Delay while at AR3:

0.036377, 0.040400, 0.053457, 0.042108, 0.048257, 0.053646, 0.035054, 0.045853, 0.046708, 0.040201, 0.052751, 0.040009, 0.053269, 0.038874, 0.040076, 0.043744, 0.044630, 0.041820, 0.045384, 0.047805, 0.047128, 0.046598, 0.053503, 0.041560, 0.034691, 0.040699, 0.042717, 0.052997, 0.038704, 0.045936, 0.042190, 0.045847, 0.042866, 0.038558, 0.060388, 0.037588, 0.045020, 0.035347, 0.040896, 0.042290, 0.036778, 0.036154, 0.038887, 0.036966, 0.039646, 0.038751, 0.043647, 0.043252, 0.040570, 0.044692

Tear Down Delay (AR2, AR3):

0.028168, 0.029236, 0.035671, 0.028859, 0.027562, 0.032719, 0.037051, 0.029745, 0.027107, 0.039050, 0.036411, 0.035347, 0.033818, 0.037953, 0.034133, 0.027431, 0.027673, 0.035568, 0.028642, 0.030835, 0.031980, 0.035395, 0.034209, 0.031734, 0.037297, 0.044037, 0.030103, 0.025817, 0.034132, 0.030715, 0.030133, 0.030714, 0.026290, 0.028405, 0.033198, 0.037497, 0.036863, 0.034151, 0.027458, 0.032125, 0.029412, 0.033837, 0.038389, 0.031897, 0.032439, 0.026543, 0.029233, 0.028558, 0.032727, 0.028507

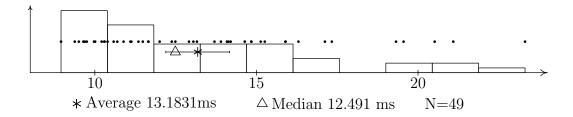


Figure B.13: Setup Delay on AR1

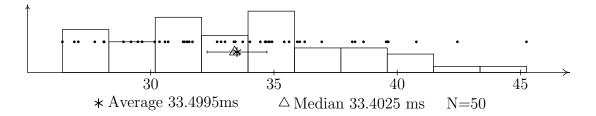


Figure B.14: Setup Delay on AR2

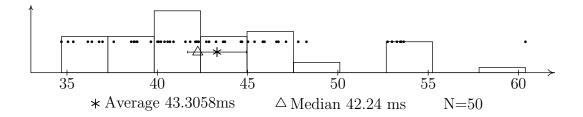


Figure B.15: Setup Delay on AR3

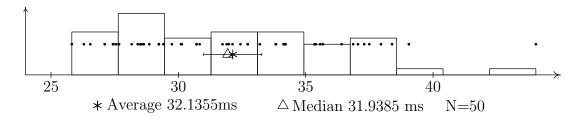


Figure B.16: Tear Down Delay

B.2 Benchmarks With Additional Delay

B.2.1 MN Sender, Sender-Initiated, Delay

Setup Delay while at AR2:

0.227109, 0.228970, 0.229176, 0.230684, 0.227169, 0.233016, 0.232014, 0.225110, 0.227048, 0.231123, 0.233058, 0.227128, 0.227032, 0.228901, 0.231209, 0.227045, 0.231339, 0.227057, 0.231372, 0.227530, 0.226342, 0.227523, 0.228799, 0.227204, 0.227137, 0.231422, 0.228859, 0.226850, 0.228803, 0.223095, 0.227326, 0.228892, 0.227033, 0.229184, 0.231073, 0.228901, 0.235086, 0.226986, 0.224854, 0.227169, 0.232974, 0.224686, 0.238022, 0.231175, 0.225025, 0.224886, 0.239260, 0.231921, 0.229069, 0.233123

Setup Delay while at AR3:

0.354903, 0.348908, 0.347158, 0.354969, 0.356937, 0.352916, 0.349000, 0.355027, 0.353245, 0.345081, 0.341408, 0.347381, 0.351049, 0.347104, 0.351357, 0.349070, 0.346979, 0.350951, 0.344929, 0.344854, 0.349045, 0.347098, 0.340886, 0.350885, 0.345224, 0.340693, 0.350991, 0.362780, 0.348834, 0.350975, 0.347104, 0.353748, 0.354985, 0.352808, 0.352992, 0.348738, 0.338586, 0.346952, 0.346665, 0.348980, 0.356901, 0.348830, 0.345316, 0.344806, 0.347159, 0.359581, 0.353376, 0.354706, 0.348879, 0.348808

Tear Down Delay (AR2, AR3):

18.077434, 10.981500, 15.229439, 18.497418, 16.017421, 24.217348, 15.661473, 23.869390, 9.113504, 14.299384, 18.099454, 20.315390, 10.089499, 20.245386, 21.061389, 16.813445, 20.819439, 16.639435, 21.425389, 20.633367, 17.319406, 17.119428, 12.413468, 20.835389, 15.327464, 15.421401, 23.591377, 19.909392, 20.721353, 14.505444, 20.051438, 15.619351, 16.223436, 19.135393, 20.463313, 11.563494, 22.599388, 21.175400, 19.157416, 21.549392

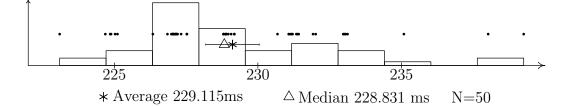


Figure B.17: Setup Delay on AR2

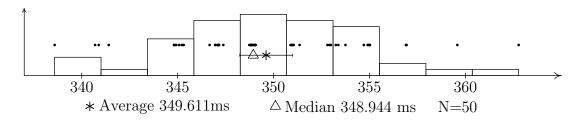


Figure B.18: Setup Delay on AR3

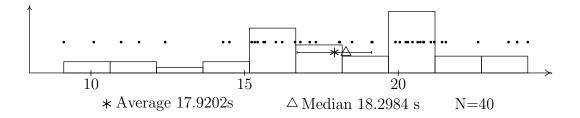


Figure B.19: Tear Down Delay

B.2.2 CN Sender, Sender-Initiated, Delay

Setup Delay while at AR2:

0.228935, 0.226959, 0.240700, 0.238705, 0.226865, 0.235197, 0.229188, 0.235180, 0.226930, 0.226932, 0.233919, 0.233290, 0.232141, 0.229185, 0.227797, 0.242559, 0.230094, 0.225547, 0.243204, 0.230976, 0.238990, 0.239350, 0.240899, 0.229240, 0.228934, 0.234934, 0.233117, 0.235199, 0.232851, 0.233292, 0.226893, 0.231509, 0.230985, 0.228839, 0.228957, 0.235316, 0.235581, 0.226572, 0.235169, 0.228936, 0.228948, 0.239168, 0.228806, 0.230957, 0.235006, 0.226952, 0.225103, 0.227369, 0.235374

Setup Delay while at AR3:

0.355301, 0.352793, 0.347252, 0.360981, 0.351001, 0.353129, 0.351033, 0.349043, 0.353398, 0.346947, 0.354858, 0.353350, 0.365269, 0.345449, 0.352941, 0.355098, 0.355415, 0.360988, 0.347401, 0.348931, 0.361216, 0.353218, 0.353402, 0.355341, 0.353363, 0.354963, 0.355092, 0.346947, 0.343359, 0.349222, 0.347322, 0.357119, 0.359203, 0.351193, 0.349234, 0.354930, 0.351208, 0.348799, 0.343186, 0.346925, 0.351322, 0.354898, 0.359240, 0.350910, 0.345007, 0.350803, 0.360752, 0.351332, 0.354991 Outliers: 0.405214

Tear Down Delay (AR2, AR3):

0.207084, 0.200987, 0.213051, 0.206789, 0.200819, 0.208900, 0.205340, 0.208897, 0.201118, 0.204651, 0.209765, 0.209259, 0.203286, 0.205878, 0.201621, 0.214976, 0.205011, 0.201177, 0.217029, 0.206861, 0.213185, 0.210943, 0.214768, 0.204986, 0.204917, 0.208979, 0.208913, 0.211246, 0.209120, 0.209204, 0.203100, 0.207413, 0.207254, 0.205346, 0.203155, 0.208962, 0.209210, 0.202667, 0.209221, 0.204748, 0.204706, 0.214957, 0.203140, 0.204952, 0.209418, 0.208892, 0.200864, 0.206038, 0.210903

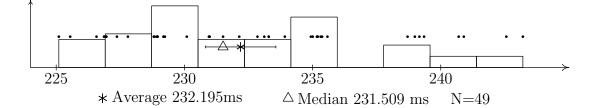


Figure B.20: Setup Delay on AR2

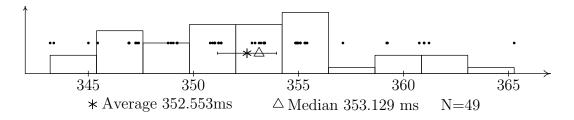


Figure B.21: Setup Delay on AR3

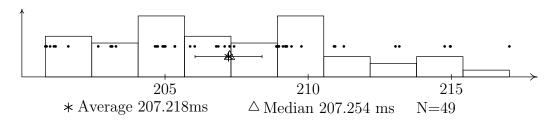


Figure B.22: Tear Down Delay

B.2.3 MN Sender, Reciever-Initiated, Delay

Setup Delay while at AR2:

0.286941, 0.286878, 0.282888, 0.281112, 0.284984, 0.280975, 0.284814, 0.285123, 0.287027, 0.285001, 0.284907, 0.282913, 0.297155, 0.281210, 0.284942, 0.288806, 0.294870, 0.286899, 0.287692, 0.284833, 0.285151, 0.280844, 0.284679, 0.285775, 0.291069, 0.291001, 0.280979, 0.282919, 0.286767, 0.285051, 0.278786, 0.286917, 0.292995, 0.285129, 0.284984, 0.280280, 0.284853, 0.283090, 0.289139, 0.287142, 0.293234, 0.289040, 0.290710, 0.286998, 0.292891, 0.290077, 0.293217, 0.283160, 0.291086, 0.292996

Setup Delay while at AR3:

0.427275, 0.431290, 0.426709, 0.430330, 0.427939, 0.431060, 0.427211, 0.427381, 0.429008, 0.427156, 0.431020, 0.427112, 0.436938, 0.424787, 0.424925, 0.427124, 0.432764, 0.429037, 0.429143, 0.427048, 0.429237, 0.435469, 0.426982, 0.432958, 0.432344, 0.435277, 0.425293, 0.431107, 0.443606, 0.426963, 0.431014, 0.431217, 0.434848, 0.432877, 0.433169, 0.426883, 0.422907, 0.430817, 0.427024, 0.432816, 0.426969, 0.440866, 0.436932, 0.429317, 0.426731, 0.429014, 0.433285, 0.440856, 0.429474, 0.427163

Tear Down Delay (AR2, AR3):

0.260857, 0.262828, 0.259010, 0.256946, 0.261112, 0.256982, 0.256942, 0.258974, 0.263013, 0.262040, 0.257308, 0.259162, 0.272911, 0.257006, 0.259360, 0.264661, 0.272892, 0.260877, 0.262879, 0.260880, 0.260904, 0.254840, 0.260691, 0.258847, 0.263038, 0.266712, 0.255564, 0.256869, 0.263233, 0.261244, 0.252842, 0.263123, 0.262943, 0.258846, 0.260885, 0.256337, 0.259624, 0.258989, 0.265536, 0.260930, 0.267139, 0.263355, 0.265108, 0.263432, 0.268961, 0.266995, 0.267170, 0.259193, 0.267201, 0.267263



Figure B.23: Setup Delay on AR2

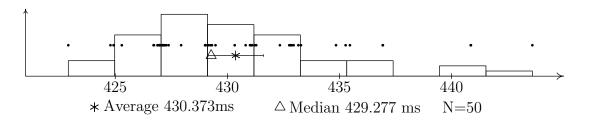


Figure B.24: Setup Delay on AR3

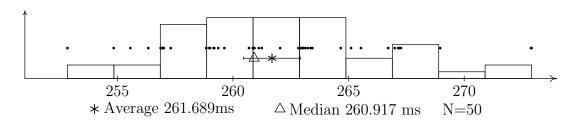


Figure B.25: Tear Down Delay

B.2.4 CN Sender, Reciever-Initiated, Delay

Setup Delay while at AR2:

0.283649, 0.287659, 0.290432, 0.291489, 0.291689, 0.287839, 0.293480, 0.283402, 0.286200, 0.285530, 0.288261, 0.280015, 0.277242, 0.287607, 0.279752, 0.281774, 0.285936, 0.293802, 0.287618, 0.283729, 0.290413, 0.290840, 0.289682, 0.289911, 0.277418, 0.285048, 0.281610, 0.294068, 0.291874, 0.289710, 0.292255, 0.289778, 0.291574, 0.287443, 0.286697, 0.296223, 0.286870, 0.284980, 0.287579, 0.284810, 0.288012, 0.286100, 0.307319, 0.283885, 0.293917, 0.292004, 0.290916 Dutliers: 0.234333

Setup Delay while at AR3:

0.455971, 0.431154, 0.430961, 0.432962, 0.432868, 0.425191, 0.426969, 0.431052, 0.428985, 0.427021, 0.432798, 0.424695, 0.425137, 0.426732, 0.426762, 0.438949, 0.429039, 0.433031, 0.426861, 0.428770, 0.424714, 0.428686, 0.426704, 0.426928, 0.432882, 0.430957, 0.425897, 0.430984, 0.432737, 0.427225, 0.436611, 0.431071, 0.441224, 0.425203, 0.433031, 0.443344, 0.429286, 0.441595, 0.442352, 0.428998, 0.427226, 0.429197, 0.427206, 0.428192

Tear Down Delay (AR2, AR3):

0.309614, 0.313631, 0.317595, 0.317616, 0.317619, 0.313603, 0.319620, 0.309628, 0.309585, 0.311626, 0.311541, 0.305631, 0.303348, 0.313595, 0.305617, 0.307635, 0.311651, 0.319537, 0.313605, 0.309606, 0.313650, 0.317631, 0.315620, 0.315555, 0.303596, 0.311624, 0.307612, 0.319581, 0.317592, 0.315601, 0.315597, 0.315578, 0.317656, 0.313638, 0.313091, 0.323598, 0.313609

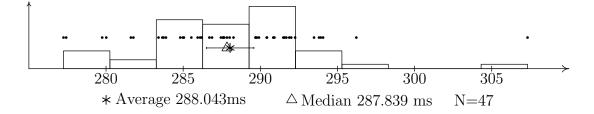


Figure B.26: Setup Delay on AR2

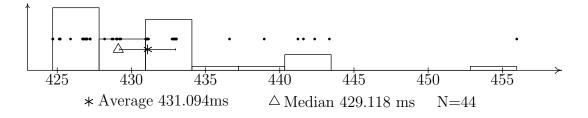


Figure B.27: Setup Delay on AR3

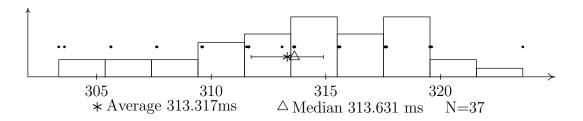


Figure B.28: Tear Down Delay

Bibliography

- [1] USAGI Project Linux IPv6 Development Project. Internet: http://www.linuxipv6.org/.
- [2] BLESS, ROLAND, THOMAS HERZOG, MARKUS OTT, MATTHIAS FRIEDRICH, MAX LAIER and MARTIN RÖHRICHT: NSIS Implementation Project: NSIS-ka. Internet: https://projekte.tm.uka.de/trac/NSIS/, July 2005.
- BRADEN, R., L. ZHANG, S. BERSON, S. HERZOG and S. JAMIN: Resource ReSerVation Protocol (RSVP) – Version 1 Functional Specification. RFC 2205 (Proposed Standard), September 1997. Updated by RFCs 2750, 3936, 4495.
- [4] DELL'UOMO, L. and E. SCARRONE: An all-IP solution for QoS mobility management and AAA in the 4G mobile networks. Wireless Personal Multimedia Communications, 2002. The 5th International Symposium on, 2:591–595 vol.2, Oct. 2002.
- [5] JOHNSON, D., C. PERKINS and J. ARKKO: Mobility Support in IPv6. RFC 3775 (Proposed Standard), June 2004.
- [6] KAN, ZHIGANG, DONGMEI ZHANG, RUNTONG ZHANG and JIAN MA: QoS in Mobile IPv6. In Info-tech and Info-net, 2001. Proceedings, volume 2, pages 492–497. Nokia China R&D Center, 2001.
- [7] KEENI, G., K. KOIDE, K. NAGAMI and S. GUNDAVELLI: *Mobile IPv6 Management Information Base*. RFC 4295 (Proposed Standard), April 2006.
- [8] MANNER, J., G. KARAGIANNIS and A. MCDONALD: NSLP for Qualityof-Service Signaling. Internet: http://tools.ietf.org/id/draft-ietf-nsis-qos-nslp, February 2008. Revision 16.
- [9] MARQUES, VICTOR, RUI L. AGUIAR, PIOTR PACYNA, JANUSZ GOZDECKI, CHRISTOPHE BEAUJEAN, CARLOS GARCIA, JOSE IGNACIO MORENO and HANS EINSIEDLER: An Architecture Supporting End-to-End QoS with User Mobility for Systems Beyond 3 rd Generation, 2002.
- [10] PASHALIDIS, A. and H. TSCHOFENIG: GIST NAT Traversal. Internet: http://tools.ietf.org/id/draft-pashalidis-nsis-gimps-nattraversal, July 2007. Revision 05.
- [11] RECIO, R., B. METZLER, P. CULLEY, J. HILLAND and D. GARCIA: A Remote Direct Memory Access Protocol Specification. RFC 5040 (Proposed Standard), October 2007.

- [12] RIZZO, LUIGI: Dummynet: a simple approach to the evaluation of network protocols. SIGCOMM Comput. Commun. Rev., 27(1):31–41, 1997.
- [13] SANDA, T., X. FU, J. MANNER S. JEONG and H. TSCHOFENIG: Applicability Statement of NSIS Protocols in Mobile Environments. Internet: http://tools.ietf.org/id/draft-ietf-nsis-applicability-mobility-signaling, February 2008. Revision 09.
- [14] SCHULZRINNE, H. and R. HANCOCK: GIST: General Internet Signalling Transport. Internet: http://tools.ietf.org/id/draft-ietf-nsis-ntlp, February 2008. Revision 15.
- [15] SHEN, C., H. SCHULZRINNE, S. LEE and J. BANG: NSIS Operation Over IP Tunnels. Internet: http://tools.ietf.org/id/draft-ietf-nsis-tunnel, March 2008. Revision 04.
- [16] SHEN, CHARLES QI: Several Framework Issues Regarding NSIS and Mobility. Internet: http://tools.ietf.org/id/draft-shen-nsis-mobility-fw, July 2002. Revision 00.
- [17] SHEN, CHARLES QI, WINSTON SEAH, ANTHONY LO, HAIHONG ZHENG and MARC GREIS: Mobility Extensions to RSVP in an RSVP-Mobile IPv6 Framework. Internet: http://tools.ietf.org/id/draft-shen-nsis-rsvp-mobileipv6, July 2002. Revision 00.
- [18] STEINLEITNER, N., X. FU, D. HOGREFE, H. TSCHOFENIG and T. SCHRECK: An NSIS-based Approach for Firewall Traversal in Mobile IPv6 Networks, Oct 2007.
- [19] STIEMERLING, M., H. TSCHOFENIG, C. AOUN and E. DAVIES: NAT/Firewall NSIS Signaling Layer Protocol (NSLP). Internet: http://tools.ietf.org/id/draftietf-nsis-nslp-natfw, February 2008. Revision 18.