
Universität Karlsruhe (TH)
Institut für Telematik

TELEMATICS TECHNICAL REPORTS

Analysis and Design of Mobility Support
for QoS NSLP

Max Laier
mlaier@freebsd.org

February, 24th 2009

TM-2009-1

ISSN 1613-849X
http://doc.tm.uka.de/tr/

Institute of Telematics, University of Karlsruhe
Zirkel 2, D-76128 Karlsruhe, Germany

Analysis and Design of Mobility
Support for QoS NSLP

Studienarbeit am Institut für Telematik
Prof. Dr. M. Zitterbart
Fakultät für Informatik

Universität Karlsruhe (TH)

von

cand. inform.
Max Laier

Betreuer:

Prof. Dr. M. Zitterbart
Dr. R. Bless
Dipl.-Inform. M. Röhricht

Tag der Anmeldung: 1. Juli 2008
Tag der Abgabe: 9. Dezember 2008

Institut für Telematik

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 9. Dezember 2008

Contents

1 Introduction 1
1.1 Objectives of this Thesis . 2
1.2 Structure of this document . 2

2 Background and Related Work 3
2.1 Mobility with MobileIPv6 . 3

2.1.1 Logical and Actual Network Flows 5
2.1.2 MIP6 signaling and Datastructures 5

2.2 The NSIS architecture . 5
2.2.1 Quality-of-Service Signaling in NSIS 8

2.3 Related Work . 10
2.3.1 From the NSIS Working Group 10
2.3.2 Other approaches to QoS-signaling for mobility 11
2.3.3 Implementation Environment 11

3 Analysis 13
3.1 QoS-signaling in Different Mobility States 13

3.1.1 At Home . 13
3.1.2 Tunnel Mode . 13
3.1.3 Route-Optimization . 16

3.2 A Detailed Look at Signaling Operations 17
3.2.1 Tunnel Mode Operation . 20

3.3 Mobility unaware NSLP Implementations 21
3.4 Message Routing State from/to the MN 21
3.5 Overhead due to MobileIPv6 . 22
3.6 Requirements . 23
3.7 Summary . 24

4 Design and Implementation 25
4.1 Flow Info Service . 25

4.1.1 Flow Info Service – Provider 27
4.1.2 Flow Info Service – Consumer 28

4.2 Quality-of-Service NSLP changes . 29
4.3 Source Address Selection . 32

4.3.1 The Home Agent to Mobile Node GIST-Query Issue 33

5 Evaluation 35
5.1 The Testing Environment . 35
5.2 Functional Evaluation . 36

vi Contents

5.2.1 MN Sender, Sender-Initiated Reservation 36
5.2.2 CN Sender, Sender-Initiated Reservation 41
5.2.3 Receiver-Initiated Reservations 42

5.3 Signaling Performance Benchmarks 42
5.4 Summary . 45

6 Summary and further directions 47

A Evaluation Packet Dumps 49
A.1 MN Sender in Sender-Initiated Mode 49

A.1.1 Initial Reservation . 49
A.1.2 Hop-to-Hop Refreshes . 50
A.1.3 Handover to AR3 - Tunnel Mode 50
A.1.4 Handover to AR3 - Route-optimized 53
A.1.5 At AR3: Hop-to-Hop Refreshes 54
A.1.6 Handover to AR1 . 56
A.1.7 At AR1: Hop-to-Hop Refreshes for old and new path 57
A.1.8 At AR1: Old Path Teardown 58
A.1.9 At AR1: Hop-to-Hop Refreshes 58
A.1.10 Handover to AR3 . 59
A.1.11 At AR3: Hop-to-Hop Refreshes 61
A.1.12 Handover Back Home . 62
A.1.13 At Home: Hop-to-Hop Refreshes for old and new path 63
A.1.14 At Home: Old Path Teardown 64
A.1.15 At Home: Hop-To-Hop Refreshes 65

A.2 CN Sender in Sender-Initiated Mode 65

B Setup and Tear Down Delay Benchmarks 67
B.1 Benchmarks Without Addition Delay 67

B.1.1 MN Sender, Sender-Initiated, No Delay 67
B.1.2 CN Sender, Sender-Initiated, No Delay 70
B.1.3 MN Sender, Reciever-Initiated, No Delay 72
B.1.4 CN Sender, Reciever-Initiated, No Delay 74

B.2 Benchmarks With Additional Delay 76
B.2.1 MN Sender, Sender-Initiated, Delay 76
B.2.2 CN Sender, Sender-Initiated, Delay 78
B.2.3 MN Sender, Reciever-Initiated, Delay 80
B.2.4 CN Sender, Reciever-Initiated, Delay 82

Bibliography 85

1. Introduction

Advanced use cases in the current Internet and—even more so—future extensions
require signaling to establish IP resources and negotiate related service parameters
such as Quality-of-Service reservations. The Next Steps in Signaling (NSIS) working
group at the IETF is creating a generic framework for signaling solutions. One of the
goals for this framework is the support of current and future mobility solutions as
an important use case. Mobility adds some interesting chalanges which are different
from normal operation. For Quality-of-Service signaling as an example, reservation
parameters have to be renegotiated along the new path whenever a movement oc-
curs, established reservations along the obsolete paths should be torn down so that
the allocated resources are available to other clients again, and—depending on the
new location of the mobile endpoint—the reservation might have to adapt to the
new conditions. In addition, the address information of a network flow does not nec-
essarily serve as a unique identifier that is valid for the lifetime of the connection.
Instead, the address information is variable and might change with every move-
ment. In order to operate properly in a mobile environment a signaling application
must be aware of mobility events—such as handovers—and be able to react with an
appropriate action.

The signaling protocols under development in the NSIS working group are divided
into two layers:

1. The Transport Layer that implements basic transport facilities. The transport
layer protocol is responsible for discovering other signaling nodes along a given
path, establishing state with a signaling enabled next hop and exchanging
messages with neighboring nodes. It also provides functions to authenticate
and authorize neiboring nodes. Currently there is only one protocol defined for
this layer: the General Internet Signalling Transport (GIST) [14]. Protocols
in this layer are referred to as NSIS Transport Layer Protocols or NTLP.

2. The application specific Signaling Layer protocols build upon the functionality
provided by the transport layer. These protocols are called NSIS Signaling
Layer Protocols or NSLP. At this time there are draft protocol specifications
for Quality-of-Service [8] and NAT/Firewall [19] NSLPs.

2 1. Introduction

The working group has also produced a mobility draft document [13] that discusses
the interaction and compatibility of these proposed protocols with mobility. This
particular draft is the basis for the work presented herein.

1.1 Objectives of this Thesis

The aim of this work is to extend an existing Signaling Application that implements
GIST and the QoS-NSLP with mobility awareness in order to perform the signaling
operations outlined in the mobility draft [13]. Based on the required modifications
an evaluation of the proposed signaling stack and its applicability to mobile scenar-
ios will be elaborated. In addition this will provide some numbers on the general
signaling performance and delay of service negotiation in mobile scenarios.

Mobility management is provided by MobileIPv6. This technology provides trans-
parent mobility support in IPv6 networks and exercises most—if not all—challenges
that come up when dealing with general IP mobility.

1.2 Structure of this document

The remainder of this document will firstly—in Chapter 2— introduce and describe
the basic principles of MobileIPv6 and Quality-of-Service signaling as well as re-
view other related work. The Analysis chapter discusses the main problems that
need solving in light of the current state of the examined software and protocols.
Chapter 4 provides theoretical solutions to the identified problems and considers al-
ternatives. In addition this chapter also describes the actual implementation changes
and additions. Chapter 5 provides experimental proof that the chosen design and
implementation are sufficient to provide signaling for mobility scenarios. In addi-
tion it outlines and summarizes how and if the required design and implementation
decisions impact on the current state of the NSIS protocol stack drafts. Finally—in
Chapter 6—a short summary and further directions are given.

2. Background and Related Work

This chapter provides a short introduction to the technologies used. It also estab-
lishes some common terms used throughout the rest of the document. Most of the
terminology is shared with the cited Internet drafts and standards so that readers
already familiar with these works can proceed to the end of this chapter in Section
2.3 that discusses other related work.

2.1 Mobility with MobileIPv6

The foundation for mobility for this work is provided by MobileIPv6 (MIP6) with
colocated Care-of-Addresses (CoA) as defined in RFC 3775 [5]. Figure 2.1 provides a
high level overview of the architecture with additional annotations that are required
further below.

The problem any mobility management needs to solve is that once a mobile node
changes its location it also changes its IP address as the address encodes an end-
system identification and network location at the same time. After an address change
all existing connections from or to the old address are no longer valid. Applications
with open connections for the old address will stall and have to re-connect with their
peers.

With MIP6 a Mobile Node (MN) is assigned a Home Address (HoA) located in the
home network that serves as a unique identifier for all connections from and to the
MN. In addition the MN acquires one ore more Care-of-Address (CoA) at its current
location. MIP6 provides a transparent mapping between these addresses and thus
hides the actual location from a communication peer—called Correspondent Node
(CN) in terms of MIP6—as well as applications running on the MN itself.

In order to realize the mapping on the wire there are two basic modes of operation:
Tunnel- and Route-optimization mode.

• Tunnel mode is used when a CN has no support for MIP6 and during the
initial contact. When a CN wants to talk to a MN it sends traffic to the MN’s
HoA located in the MN’s home network. The IP datagram reaches the home

4 2. Background and Related Work

CN

MN
CoA 2

MN
HoA

HA AR

AR

AR X

Logical Flow

Tunneled Flow

Tunnel Flow

Movement

Route optimized Flow
old

Route
optimized

Flow
new

MN
CoA 1

Figure 2.1: MobileIPv6—Basic operations

network by means of normal IP routing. If the MN is not available at the
homelink a special service node within the home network—the Home Agent
(HA)—intercepts the packet on behalf of the MN. Because the MN registers
and updates its CoA with the HA, the latter knows the current location (i.e.
the current CoA) of the MN and forwards the intercepted packet through a
tunnel that is established between the HA and the MN at its CoA. In the
opposite direction—if the MN wants to reply—it uses the same tunnel to send
the packet to the HA that then forwards it on behalf of the MN using the HoA
as the packet source. This is valid since the HA is located at the home link
where the HoA is located. In addition, the MN can use the tunnel to the HA
to initiate contact with yet unknown CNs.

• Route-optimization is used with MIP6 enabled CNs. The MN and CN establish
a Binding between CoA and HoA. Once a Binding is in place the MN can send
traffic directly from the CoA to the CN—using the optimized route between the
current location and the CN. In turn, the CN will also send traffic directly to
the MN’s CoA. Special IPv6 options are used to differentiate route-optimized
packets from normal traffic and both sides check for an active Binding before
accepting such traffic. Section 2.1.1 provides a more detailed discussion of
these operations.

As the MN moves to a new location and acquires a new CoA it updates existing
Bindings and thus connected CNs will know where to send their traffic. There is
also a Binding between the MN and its HA that ensures that the tunnel follows the
MN to the new location.

Independent of the used mode of operation an application on either side of the
connection always sees the HoA as local or peer address on the socket layer.

2.2. The NSIS architecture 5

2.1.1 Logical and Actual Network Flows

In Figure 2.1 one can see that the use of MobileIP may result in creation of various
flows that differ from the logical flow that is visible to the application. When we
speak of a logical flow, we mean the flow originated from or destined to a MN’s
HoA. Only if the MN is at its home network the logical flow is identical to the actual
flow(s) along which the traffic is sent. In tunnel mode there are two actual flows:
The inner, tunneled flow, which can be seen as an extension of the logical flow after
the HA has intercepted it, and the outer, tunnel flow, that carries the encapsulated
tunnel packets. In route-optimization mode there is the route optimized flow where
the HoA(s) in the logical flow are replaced by the MN’s current CoA. In order to
do signaling in these scenarios the signaling application (e.g. QoS NSLP) must be
aware of the actual flow(s) to perform its task correctly.

2.1.2 MIP6 signaling and Datastructures

CoA-Test

HoA-TestHoA-Test

BindingUpdate

BindingAcknowledgment

MN
HoA CoA

HA CN

Install Binding
HoA:CoA

Install Binding
CN:HoA:CoA

CoA-Test-Init

HoA-Test-Init HoA-Test-Init

Figure 2.2: MobileIPv6—Binding Update Process

As mentioned earlier MIP6 performs signaling to inform the HA and MIP6-enabled
CN of the MN’s CoA. The process is outlined in Figure 2.2. It involves a series of
tests to ensure that the MN is really in control of both the CoA and HoA to avoid
the use of MIP6 in spoofing and amplification attacks. The MN takes tokens from
those tests and generates a BindingUpdate (BU). Once the BU is received at the HA
or CN and the tokens match, the peer replies with a BindingAcknowledgement (BA).
The peer also installs a Binding in its BindingCache. The Binding stores the MN’s
HoA and CoA and allows the peer to perform route-optimized communication to
the MN. After the MN has received the BA it installs its own Binding. This Binding
is stored in the MN’s BindingUpdateList (BUL) and contains the MN’s HoA and
CoA as well as the CN’s address for which the Binding is valid. At this point the
MN can also send route-optimized packets to the CN at this address.

Note from the above that the receipt of the BindingUpdate or BindingAck at the
CN and MN respectively indicates the earliest time route-optimization to/from the
new CoA is possible. Consequently, we will use these events as triggers for the QoS-
Signaling to update any affected reservations. Also note that the BindingCache and
BindingUpdateList contain all active Bindings at any time.

2.2 The NSIS architecture
Figure 2.3 gives an overview of the NSIS architecture. It shows the two layer archi-
tecture with the GIST NTLP at the bottom and various NSLPs on top. The NSLP

6 2. Background and Related Work

Non GIST Hop
normal

IP-forwarding

NSLP 1

GIST NTLP

NSLP 2 NSLP 3

GIST API

Network

NSLP 1

GIST NTLP

NSLP 2 NSLP 3

GIST API

Network

Signaling Node 1 Signaling Node 2

Message Routing States
Messaging Associations

Figure 2.3: The NSIS architecture and layering

layer implements the actual signaling application, while GIST layer only provides
common basic functionality required and used by all NSLPs. The NSLPs are re-
sponsible to manage end-to-end state, if required. Figure 2.4 depicts the process.
GIST only holds state with its direct GIST neighbors. A direct GIST neighbor is
not necessarily the next IP-hop, but can be several IP-hops away. Also, if the di-
rect GIST-neighbor is not enabled for a certain NSLP it might be skipped for state
installation for that NSLP.

QoS MRS / MA

NSLP2 MRS / MA

GIST GIST GIST GIST

QoS NSLP 2 NSLP 2QoS QoSNSLP 2

Figure 2.4: NTLP Hop-to-hop state

The GIST API, offered to the NSLPs, evolves around two basic functions to send
and receive messages with some additional functions to manage state and receive
information about network topology changes.

When an NSLP wants to send an initial signaling message for a flow it provides
GIST with the following information:

A Session-ID to manage end-to-end state. GIST is oblivious of the meaning of
the SID and forwards it verbatim inside the resulting messages.

The Message Routing Information (MRI) for the flow. This item contains
a description of the flow: Source and destination address, protocol, source and

2.2. The NSIS architecture 7

destination port, as well as additional information to classify the flow such
as SPI or the IP6 Flow Label. We will call the sum of this information or a
sufficient subset thereof the Flow Identifier. The MRI object that is used as
the argument for the API call also selects a Message Routing Method (MRM).
Currently GIST defines three MRMs:

Path-coupled (PC-MRM) where GIST attempts to send the signaling mes-
sages along the same path as the flow.

Explicit-Signaling-Target (EST-MRM) where GIST will send the sig-
naling message directly to the destination of the flow instead of establish-
ing state along the path.

Loose-End (LE-MRM) which is used for NAT discovery and proxy oper-
ations.

For the scope of this work we are only concerned with the PC-MRM.

Transfer parameters that tell GIST what kind of state to install, how many
GIST- and IP-hops the message is allowed to travel and properties for the
state GIST should install as a result of the message. The NSLP can select
between unreliable, reliable and confidential transport and it is up to GIST
how to best provide the requested mode selecting a suitable transport protocol
(UDP, TCP, SCTP, TLS).

The payload for the signaling message itself.

Assuming PC-MRM and unreliable transfer, Figure 2.5 shows the API and signaling
messages exchanged between the NSLP and GIST, and neighboring GIST nodes
respectively. GIST starts operation by discovering its next neighbor on the path. It
does so by sending a GIST-Query message to the flow destination. This Query is
intercepted by the next GIST node that—in return—replies with a GIST-Response.
The first GIST node completes the three-way-handshake with a GIST-Confirm. At
this point both GIST nodes have installed a—so-called—routing state for the flow
described in the MRI and the NSLP that initiated the exchange. Now the first GIST
node can send the actual payload to the neighbor.

The receiving GIST instance informs the NSLP via a ReceiveMessage API call. The
NSLP detects that it is not the final destination of the message by looking at the
MRI and asks GIST to forward the message.

Again, the GIST node sends a Query to discover its next neighbor. This Query
message should closely resemble packets of the flow and thus GIST attempts to send
it with a spoofed IP-source address of the flow source. The GIST node can, however,
choose to use one of its own addresses as IP-source address in the Query message.
This Signalling Source Mode is instrumental in detecting legacy NAT hops. Oth-
erwise, the address of the GIST node itself is also stored in the Query message’s
Network Layer Information (NLI) object so that the intercepting/receiving GIST
node knows where to send the Response to. Once the routing state has been estab-
lished the GIST node forwards the payload as requested.

The NSLP on the final hop decides to send back a reply on the NSLP level. In order
to do so, GIST provides a Source Identification Information Handle (SII-handle)

8 2. Background and Related Work

NSLP GIST
Signaling Source

NSLP GIST
Signaling Forwarder

NSLP GIST
Signaling Destination

SendMsg
GIST-Query

 GIST-Response

GIST-Confirm

DATA

RecvMsg

SendMsg

GIST-Query

 GIST-Response

GIST-Confirm

DATA

RecvMsg

SendMsg

 DATA
RecvMsg

SendMsg

 DATA

RecvMsg

Interception

Spoofed

Figure 2.5: Basic signaling process

with the ReceiveMessage API call for the routing state over which the message was
received. This handle can be used in the SendMessage API call to send a message
over an existing routing state to a known peer.

GIST regularly retransmits Queries for existing routing states in order to detect
topology changes. This process is called GIST probing. If a new peer is detected,
the NSLP is informed of the new peer and receives a new handle to use the resulting
routing state to (re-)send messages in order to update the end-to-end state as a
result of the network topology change.

In addition to simple routing state, GIST can also establish a Message Association
(MA) with a neighbor if reliable or confidential transport is requested. The QoS-
NSLP works over unreliable transport by default as means of confirmation are built
into the signaling protocol itself and MA-setup introduces additional, undesired
delay. We do not work with Message Associations in our implementation due to
implementation obstacles in the way MAs are currently set-up.

2.2.1 Quality-of-Service Signaling in NSIS

Quality-of-Service signaling is required whenever a node wants to reserve resources
for traffic originated from or destined to itself. The QoS NSLP provides means to
establish, manage and destroy such resource reservations. It is designed to allow for
both sender- as well as receiver-initiated reservations—in contrast to the currently
deployed Resource ReSerVation Protocol (RSVP) [3] that only supports the latter.

2.2. The NSIS architecture 9

The design allows for using a plethora of different QoS-mechanisms including IntServ
as well as DiffServ. It includes support for reservation sessions, allows to aggregate
sessions as well as to bind related sessions together. This will be required to combine
the reservations for a tunneled flow with the reservation for the tunnel flow itself
(see Figure 2.1).

QNI
sender

QNE QNR
receiver

RESERVE

RESPONSE
RESPONSE

RESERVE

RESERVE

RESERVE

RESERVE

RESERVE

Initial
Resource Negotiation

and
Reservation Setup

Independent Hop-to-Hop
Refreshing Reserves

Reservation times out
after QNI stops Refreshes

Figure 2.6: Basic QoS signaling messages – sender-initiated

Independent Hop-to-Hop
Refreshing Reserves

Initial
Resource Negotiation

and
Reservation Setup

QNR
sender

QNE

QUERY
QUERY

RESERVE
RESERVE

RESPONSE
RESPONSE

RESERVE

RESERVE

RESERVE

RESERVE

QNI
receiver

Reservation times out
after QNI stops Refreshes

Figure 2.7: Basic QoS signaling messages – receiver-initiated

The basic message exchange performed by the QoS-NSLP is shown in Figure 2.6. In
order to establish a reservation the QoS-NSLP initiator (QNI) sends a RESERVE
message along the path of the flow the reservation is for. The QoS-nodes along
the path (QNEs) forward the message until it hits the destination—the QoS-NSLP
responder (QNR)—or one node detects that it can not satisfy the requested reser-
vation. Once the destination receives a RESERVE it replies with a RESPONSE
message that again travels back, hop-by-hop, until it reaches the initiator again.
It should be mentioned that the RESPONSE is optional and has to be specifically

10 2. Background and Related Work

requested in the RESERVE message by attaching a RII-object. Setting up of the
QoS reservation requires a RESPONSE most of the time, however. On the way the
QoS-nodes set-up the necessary resources to the negotiated amount as they forward
the RESERVE and later commit the resources as the RESPONSE is processed.
Once the RESPONSE is received at the QNI the reservation is completely set up
and the resources can be used. In order to preform receiver-initiated reserves (cf.
Figure 2.7), the flow sender starts by sending a QUERY message to the receiver
that then—in reply—sends a RESERVE and the mechanism continues as above.
The QoS-NSLP uses a soft-state mechanism, so periodical refreshes are necessary to
keep the reservation active.

2.3 Related Work

This section reviews documents and drafts from the NSIS working group that build
the foundation for our work. We also review other approaches to the problem of
QoS in mobile environments and highlight differences to our work. Finally, we give
a brief overview of the software that is the foundation for our extensions.

2.3.1 From the NSIS Working Group

The mobility-draft [13] serves as the theoretical background for this work. It dis-
cusses the main problems with mobility and signaling and introduces some new
concepts to deal with these problems. The main findings are:

1. Signaling must be preformed along the actual flow rather than the logical flow.

2. Movements are different from normal re-routing events and special care is
required to avoid problems such as double reservations or accidental reservation
tear down. In order to tackle this problem, the draft introduces the concept
of a Crossover node (CRN) (in Figure 2.1, the CRN is marked with an “X”).
The CRN is the first node that is on both the old path before a movement as
well as on the new path after a movement. This node is responsible for tearing
down the obsolete part of the old path. It also must filter accidental tear down
messages coming from the old path after the last node has detected that the
MN is no longer present at its end of the path.

3. Tunnel mode must be considered and needs special handling. For more detailed
discussion of the operations required for tunnel mode, the mobility-draft falls
back on the dedicated tunnel-draft [15].

Most of these points will be examined in more detail during our analysis. The draft
[13] also provides some good examples which we will revisit in later chapters.

An early draft document [16], also produced in relation to the NSIS working group,
provides an excellent discussion of the issues that arise from the different flows
discussed in Section 2.1.1 and the consequences for the NSIS architecture. Most
noteably, it includes an extensive discussion whether signaling should be done for
the logical or actual flow, and at which layer to use which flow representation. We
will reiterate some of the points in this draft in the next chapter as we discuss the
different flows.

2.3. Related Work 11

In addition to the mobility-draft, which focuses on the QoS-NSLP mostly, there is
another article [18] that shows how the NAT-Firewall-NSLP can be used to allow
MobileIP signaling, route-optimization and tunnel establishment in environments
with restrictive firewall settings. Similar to the mobility-draft, this article is focused
on the signaling process itself and does not provide details on the actual interaction
between the signaling application and the mobility management.

2.3.2 Other approaches to QoS-signaling for mobility

New network developments these days, at least since 3G, always have mobility and
some kind of Quality-of-Service support on the checklist of desired features. Many
works were produced in this context ([9]). However, most of the approaches—
originating from the context of classical, centrally managed telephone networks—
rely on central management infrastructure and highly integrated solutions. With
the move towards all-IP based solutions—in 4G networks and beyond—a slight shift
of focus has happend and newer approaches move away from the centralization
([4]). Still, most currently proposed or deployed solutions tightly integrate mobility-
and QoS-Management. This limits the implementation freedom serverly and often
precludes future extension and adaptation.

On the other hand there are some proposals to add QoS-functionality to specific
IP-mobility management systems. For instance [6] that suggests to piggyback QoS-
information on the MobileIPv6 signaling messages. Again, these approaches lack in
flexibility and extensibility as they focus on a specific environment.

The approach presented herein is different from that as it depends on a generic
signaling framework that is only loosely coupled with mobility management. This
allows changes in the mobility management as well as the QoS-signaling independent
of each other, facilitating future improvements and adaption to new environments.
At the same time it does not preclude a more tightly coupled implementation in order
to facilitate environment specific optimizations. The signaling framework provides
consistent semantics for the requested QoS-parameters and it is up to the local
implementation how to best provide them.

Several approaches ([4]) utilize RSVP for QoS-signaling in the same way we use the
NSIS framework. While this has similar benefits as our approach, RSVP has not
been designed with mobility in mind and depends—for example—on the address
information to correlate messages from the same session. As we mentioned above
and will discuss in more detail later, this is a serious problem in mobile environ-
ments. The works in this category usually propose extensions to RSVP to include
the HomeAddress as a session identifier ([17]) to work around this limitation.

2.3.3 Implementation Environment

The implementation of this work is based on the NSIS protocol implementation
[2] provided by the Universität Karlsruhe (TH). This provides a complete imple-
mentation of GIST as well as the QoS-NSLP. An overview of this implementation
environment—including the MobileIPv6 daemon—is provided as Figure 2.8. In con-
trast to the draft it uses a three layer approach. A library provides basic data types
and a high-level wrapper to transport protocols. GIST is implemented as either a
standalone daemon that provides the NSLP API calls over a unix domain socket, or

12 2. Background and Related Work

protlibQoS NSLP

LibGIST

●Data types

●Message queues

●Intra/Inter-module
exchange

●Timers

●Addresslists

QoS-FSM
statemodule

RMF

 QoS-Client API

 GIST API

 Timers
QoS-

Sessions
Context

GIST-FSM
statemodule

 Timers
MRS
MA

SII-list

TPoverUDP TPoverTCP TPoverSCTP
TPquery
Encap

Compat GIST API

 Network

MobileIPv6 Daemon

Binding
Update List

Binding
Cache

MIP6 signaling

Install Transformations

QoS Client Application

External NSLP

Figure 2.8: Architectural Overview of the Implementation Environment

it can also be used as a library linked to the NSLP application directly. The whole
implementation is written in C++ and multi-threaded. All communication is done
over internal message exchange between the threads making it easy to compartmen-
talize NSLPs into different address spaces. The QoS-NSLP application we use for
our experiments is statically linked to the GIST library. It also links to a separate
library that provides the QSPEC handling used to describe actual QoS reservations.
This is not show in the figure.

Mobility support is provided by the Linux kernel with the MobileIPv6 daemon from
the USAGI project[1]. The kernel provides a unified interface to apply transforma-
tions to the IPv6 header of incoming and outgoing datagrams. The MIP6-daemon
uses this interface and realizes the MIP6 signaling described in some detail above. It
also watches the interfaces for new Care-of-Addresses and other significant events.

3. Analysis

This chapter will identify the main, structural problems and challenges for Quality-
of-Service signaling in a mobile environment. We do so by walking through several
examples identifying the problems in each of them until we summarize the findings
and come up with what needs to be implemented to resolve these issues.

3.1 QoS-signaling in Different Mobility States

In order to analyze what kind of special handling is required in the face of mobility
we look at the MobileIP6 architecture step-by-step and try to identify what kind of
signaling is required in the different scenarios.

3.1.1 At Home

While the MN is at the home network and communicating from the HoA directly,
there is no special handling required as the actual and logical flows are identical.

3.1.2 Tunnel Mode

In tunnel mode (see Figure 3.1) there are two flows: the tunneled flow—an extension
of the logical flow that is transparent to the CN—and the tunnel flow that carries the
encapsulated packets between the HA and the MN. In order to establish Quality-of-
Service for traffic passed between the MN and CN we must establish QoS reservations
for both these flows. As described in the tunnel-draft [15] special handling is required
at the endpoints of the tunnel. Initially either the CN or the MN—depending on
which side the flow sender is—tries to establish a reservation for the logical flow
and sends a RESERVE message along that path. If the MN is the initiator it must
immediately also establish a reservation along the tunnel flow (or reuse/update an
existing reservation). If the CN is the flow sender the RESERVE will travel towards
the home network as normal, once the HA intercepts the packet it has to take care of
a respective reservation for the tunnel flow. Once both reservations are established
successfully the HA and MN should bind the two sessions together in order to notify
the other if one changes or goes down. The QoS-NSLP has support for all the

14 3. Analysis

CN
MN
HoA

HA AR

AR

Logical Flow

Tunneled Flow

Tunnel Flow

MN
CoA 1

Figure 3.1: MobileIPv6 in tunnel mode

required mechanisms to cater for these operations and the only challenge in this
scenario is the interaction with the actual tunneling mechanism. Figure 3.2 shows
the signaling messages to establish a reservation initiated at the CN. Note that the
reservations for the inner and outer tunnel flow could happen in parallel.

CN

QNI QNEs

HA
TEnter

QNEs

MN
TExit
QNR

CoA HoA
RESERVE

RESERVE

RESERVE-T
RESERVE-T

RESPONSE-T
RESPONSE-T

RESERVE

RESPONSE

RESPONSE
RESPONSE

Reservation
for the
Tunnel Flow

Reservation
for the
Tunneled Flow

Figure 3.2: QoS signaling in tunnel mode with CN as QNI

This figure also shows that the inner and outer flow terminate at different addresses
at the MN. The tunnel flow is between the HA and the MN’s CoA, whereas the
tunneled flow terminates at the MN’s HoA. This has consequences for any Routing
State that is used to carry the corresponding signaling messages.

Figure 3.3 shows a serious problem with tunnel mode when the HA uses signaling
source mode for the outgoing GIST-Query. As the HA always has an active Binding
with the MN, IP-datagrams from the HA-Address to the MN’s HoA will always be

3.1. QoS-signaling in Different Mobility States 15

CN
sender

QNE HA Tunnel QNE
MN

receiver
CoA HoA

RESERVE
RESERVE

RESERVE

GIST-Query

HA needs to forward
RESERVE to the

MN at its HoA

Create MRS first
GIST-Query is not

tunneled due to
existing

Homebinding

GIST-Query for
tunneled reservation

wrongly intercepted at
Tunnel QNE

Figure 3.3: Problems with GIST-Queries in tunnel mode

GIST-Query

Tunneled

CN
receiver

QNE HA Tunnel QNE
MN

sender
CoA HoA

RESERVE-T
RESERVE-T

RESPONSE
RESPONSE

GIST-Response

GIST-Confirm

RESERVE
RESERVE

RESERVE

RESPONSE
RESPONSE

RESPONSE

Tunnel
de-capsulation and

interception of
GIST-Query at HA

Further Messages
between HA and MN

are not tunneled

Figure 3.4: Same situation as in Figure 3.3 with MN as sender

route-optimized. This also applies to the GIST-Query that is supposed to establish
routing state between the HA and the MN at its HoA. As a result the Query is not
encapsulated in the tunnel and will be intercepted by any intermediate NSLP nodes.
The intercepting node will then process the RESERVE message from the HA and
try to forward it to the MN. In order to do so it sends a GIST-Query towards the
MN’s HoA that ultimately arrives at the HA again creating a loop (unless every
intermediate hop also has an active Binding with the MN).

In order to avoid such problems there are three possible solutions:

1. Avoid GIST-Query interception for route-optimized packets.

2. Avoid signaling source mode for GIST-Queries from the HA to the MN.

16 3. Analysis

3. Force GIST-Queries in signaling source mode from the HA destined to a con-
nected MN’s HoA into the tunnel encapsulation, regardless of any active Bind-
ings.

Fortunately, this is not a problem when the MN is the QNI as one can see from Fig-
ure 3.4. In this scenario, the GIST-Query datagram will always go into the tunnel
as it is destined for the CN. If there exists an active Binding with the CN, the MN
would not try to establish a tunnel mode reservation in the first place. Also note
that further messages (after the GIST-Query) between HA and MN need not neces-
sarily be tunneled. This is not a problem as these messages will not be intercepted
at intermediate nodes but are treated as normal datagrams and forwarded to the
destination as such.

3.1.3 Route-Optimization

CN
MN
HoA

HA AR

AR

Logical Flow

Route optimized FlowMN
CoA 1

Figure 3.5: MobileIP6 in route-optimization mode

Once in route-optimization mode no traffic flows along the logical path anymore
and consequently any QoS-reservation must be made along the actual path. The
signaling operations required are not at all different from the normal operation, but
care must be taken to the Message Routing State that is formed to and from the
MN. All MRSs that carry route-optimized flows should be terminated at the MN’s
CoA, otherwise—if the HoA was used—the MRS would be tunneled over the HA or
get route-optimized itself. This would impose serious latency to the signaling due
to the additional HA detour. This is discussed in more detail in section 3.4.

Intermediate nodes (QNEs) on the (route-optimized) path between the CN and MN
will not see any difference between a route-optimized flow and a normal flow. No
special handling or additional features are required. Earlier draft documents [16]
were considering to keep the logical flow source and destination in the MRI for
route-optimized flows. This, however, would mean that all nodes on the path would
have to parse the mobility options that are placed in the IP packets in order to

3.2. A Detailed Look at Signaling Operations 17

CN

MN
CoA 2

MN
HoA

HA AR

AR

AR X

Logical Flow

Movement

MN
CoA 1

1

2

34

Figure 3.6: MobileIP6 in route-optimization mode after a movement

classify the packets that belong to the route-optimized flow. Using the actual flow
in the MRI for the route-optimized reservation makes this much easier.

Using the route-optimized flow identifier, however, raises another problem illustrated
in Figure 3.6. After a movement (cf. 2 in the figure) the MN acquires a new CoA and
the flow changes (cf. 3 in the figure). This means that the flow identifier alone cannot
be used at intermediate nodes to detect a mobility event. Fortunately, the QoS-
NSLP uses another, flow identifier independent SESSION ID to track reservations
and end-to-end state. This allows intermediate nodes to correlate messages before
and after a movement to the same session. The first node that already has an active
reservation with the same SESSION ID but different flow identifier will note this
fact and become the Crossover Node (CRN) as described in the mobility-draft [13].
The CRN is denoted by an “X” in the figure. It is the job of the CRN to initiate
release of the—no longer required—resources on the now obsolete path (cf. 4 in the
figure). In some situations—discussed in detail in the following section—the CRN
can not directly issue a tear and can only inform the old path that it has detected
a route change. It is then the job of the last node on the old path to detect that
it is a dead-end and to send a tear towards the CRN. The CRN then has to block
further propagation of this tear on the still valid part of the reservation.

3.2 A Detailed Look at Signaling Operations

Taking a closer look at the required signaling operations we identify four different
cases in a mobile environment: Sender- and Receiver-initiated reservations with
either the MN or the CN as flow sender. The flowing message flow figures show the
process for route-optimization mode in detail.

18 3. Analysis

MN
sender

QNI

old new

old AR

QNE

new AR

QNE

CRN

QNE

CN
receiver

QNR

RESERVE
RESERVE

RESERVE

RESPONSE
RESPONSE

RESPONSE

RESERVE
RESERVE

RESERVE
NOTIFY

NOTIFY

RESPONSE
RESPONSE

RESPONSE

Detect
dead-end

RESERVE (TEAR)

Reservation for the
old actual Flow

Reservation for the
new actual Flow

Stop

Tear-down of the old
reservation

Figure 3.7: QoS-Signaling Messages: MN sender, sender-initiated

In the case where the MN is sender and QNI (cf. Figure 3.7) the Crossover Node
detects a change of its upstream peer when receiving the new RESERVE message.
Thus, it can not tear down the old path on its own, but can only inform the old
path that it has detected a routing change by sending a NOTIFY message. From
that point on it will silently drop refreshing RESERVEs from the old path. At some
point the last QNE on the old path (usually the old Access Router) will detect that
its upstream peer is no longer available, together with the earlier NOTIFY it now
can assume that it is the dead-end of the old path and sends a RESERVE with the
TEAR-flag set in order to free the resources. The CRN stops further propagation of
the TEAR. Note that there can be other QNEs between the CRN and the dead-end
on the old path. The resources on these nodes will also be freed as the TEAR from
the dead end is processed.

When the CN is sender and QNI at the same time (cf. Figure 3.8) the situation
is different. The CRN detects a change of its downstream peer when forwarding
the new RESERVE message. At this point it has to store the old MRI in order
to later send a RESERVE with TEAR-flag. It does so as soon as it receives the
RESPONSE for the new reservation and is thus sure that the old reservation is no
longer required. The TEAR is forwarded on the old path—again along as many
QNEs as there are between the CRN and the dead-end. The dead-end QNE (again,
usually the old AR) tries to forward the message to the MN at the old CoA that is
no longer available and the process stops.

The receiver-initiated cases (see Figures 3.9 and 3.10) look very similar to the re-
spective receiver-initiated case. The only difference is the initial QUERY message
to start the process.

3.2. A Detailed Look at Signaling Operations 19

MN
receiver

QNI

old new

old AR

QNE

new AR

QNE

CRN

QNE

CN
sender
QNR

RESERVE
RESERVE

RESERVE

RESPONSE
RESPONSE

RESPONSE

RESERVE
RESERVE

RESERVE

RESPONSE
RESPONSE

RESERVE (TEAR)

RESPONSE

RESERVE (TEAR)

Reservation for the
old actual Flow

Reservation for the
new actual Flow

Dead
end

Tear-down of the old
reservation

Figure 3.8: QoS-Signaling Messages: CN sender, sender-initiated

MN
sender
QNR

old new

old AR

QNE

new AR

QNE

CRN

QNE

CN
receiver

QNI

QUERY
QUERY

QUERY

RESERVE
RESERVE

RESERVE

RESPONSE
RESPONSE

RESPONSE

RESERVE(TEAR)

RESERVE(TEAR)

Reservation for the
new actual Flow

Tear-down of the old
reservation

QUERY
RESERVE

RESPONSE

Reservation for the
old actual Flow
(condensed)

Dead
end

Figure 3.9: QoS-Signaling Messages: MN sender, receiver-initiated

In addition, it should be noted that the QNR can also be the Crossover Node if there
are no other common QNEs between the old and new path. In this case the QNR
will perform the same tasks as the CRN as it has the same information available.

20 3. Analysis

MN
receiver

QNR

old new

old AR

QNE

new AR

QNE

CRN

QNE

CN
sender

QNI

Reservation for the
new actual Flow

Tear-down of the old
reservation

QUERY
RESERVE

RESPONSE

Reservation for the
old actual Flow
(condensed)

QUERY
QUERY

QUERY

RESERVE
RESERVE

NOTIFY
RESERVE

RESPONSE
RESPONSE

RESPONSE

NOTIFY

Detect
dead-end

RESERVE (TEAR) Stop

Figure 3.10: QoS-Signaling Messages: CN sender, receiver-initiated

Also of note is that in cases where the QoS-NSLP cannot send a TEAR from the
CRN directly, because the direction of the reservation does not allow so and we fall
back on sending a NOTIFY, the QNEs on the old path will be issuing refreshing
RESERVEs for some time before the dead-end is detected and the path is properly
torn down. It might even happen that the reservation on the old path times out
before the dead-end is detected at all. Neither of this is a problem. We only have
to ensure that the CRN properly filters the refreshing RESERVEs.

Finally, it is of note that the Mobile Node is almost always a Crossover Node as well,
because the up- or downstream peer of the MN changes after the handover unless
the movement is localized enough that the next GIST hop is the same as before.
Most of the time this doesn’t matter as the MN can not communicate from the old
CoA and thusly can not issue any messages on the old path. The only exception
from this is after the MN leaves its home network. In this scenario the routing
state between the MN and HA has been established from/to the HoA and the MN
can still use it to send a message to the HA, and the old path, over it. After this
message has been sent the MN must make sure that the routing state is torn down,
otherwise subsequent GIST probing attempts will be route optimized and confuse
the next hop on the new path, as it will interpret the newly established routing state
as a routing change and start CRN processing.

3.2.1 Tunnel Mode Operation

The basic signaling operations for tunnel mode are already described in Section 3.1.2.
In essence the problem can be reduced to a route-optimized reservation between
the MN and the HA. As we will show in the implementation there is no other
special handling for tunnel reservations required once it has been created. The

3.3. Mobility unaware NSLP Implementations 21

only issues that need to be addressed is the creation and—after switching to route-
optimization—the destruction of the tunnel reservation.

Another issue to consider is the fact that after a handover there is a short time
where the MN and CN may fall back to tunnel mode before a new binding has
been established. This tunnel is usually very short-lived and does not justify an
additional tunnel reservation. In order to avoid creating a tunnel reservation just
to tear it down again a few seconds later, we will introduce a hold-off timer that is
started as soon as we detect a tunnel and establishes the required tunnel reservation
after a short wait period unless the flow has switched to route-optimization in the
meantime.

3.3 Mobility unaware NSLP Implementations

From the analysis so far it is obvious that all nodes that are active components
in the MobileIP setup (the Mobile Node, the Home Agent and MobileIP enabled
Correspondent Nodes while not in tunnel mode) need also mobility aware signaling
applications. The impact on operational reliability differs. While in tunnel mode the
impact is limited to the tunneled section. If the signaling application on either MN or
HA are not mobility aware, this might result in a missing reservation for the tunnel
section—depending on the direction of the reservation. Once route-optimization is
enabled it is mandatory that the signaling implementation on the flow sender is
mobility aware, otherwise it will—as discussed above—try to establish a reservation
for the logical flow. If this attempt reaches the receiver and the implementation on
that node is mobility aware it is possible to detect the error and ask the mobility
management to fall back to tunnel mode. Otherwise the signaling will fail.

Table 3.3 summarizes possible scenarios and confirms the assumption that the Mobile
Node is key in the process. As long as the signaling application on the MN is aware
of its own mobility everything fails gracefully. The missing tunnel reservation can
not be worked around. Eventhough the MN is able to detect the case where the
signaling application on the HA forgets to create a tunnel reservation it can not
issue a reservation itself if it is not the flow sender. A possible sollution would be
to send a special NOTIFY or QUERY message to the HA via the EST-MRM that
would then make the HA issue a reservation. Currently the QoS-NSLP specification
does not offer such a message, however. It should be noted that a receiver-initiated
reservation does not offer what is needed. Because the signaling path is always built
from sender to receiver, it is most likely different from the path in the opposite
direction due to asymmetric routing.

3.4 Message Routing State from/to the MN

In order to transmit actual traffic, GIST establishes so-called Message Routing States
(MRSs) along the discovered path, basically the state of a signaling connection
between neighboring GIST nodes. On the MN much care has to be taken concerning
the decision whether to use the HoA or the CoA as source/destination for an MRS. In
order to establish the MAs as closely as possible along the path of the actual flow, the
CoA is the right choice in most cases. Figure 3.11 illustrates the additional problem
already mentioned in section 3.1.3. If the message routing state is established from

22 3. Analysis

Mobility awareness Operation mode Impact

MN X, HA X, CN † Tunnel mode none
Route optimization, MN is sender none
Route optimization, CN is sender fall back

MN X, HA †, CN X Tunnel mode, MN is sender none
Tunnel mode, CN is sender no tunnel reservation
route optimization none

MN X, HA †, CN † Tunnel mode, MN is sender none
Tunnel mode, CN is sender no tunnel reservation
route optimization, MN is sender none
route optimization, CN is sender fall back

MN †, HA X, CN X Tunnel mode, MN is sender no tunnel reservation
Tunnel mode, CN is sender none
route optimization, MN is sender fall back
route optimization, CN is sender none

MN †, HA X, CN † Tunnel mode, MN is sender no tunnel reservation
Tunnel mode, CN is sender none
route optimization fail

MN †, HA †, CN X Tunnel mode no tunnel reservation
route optimization, MN is sender fall back
route optimization, CN is sender none

MN †, HA †, CN † Tunnel mode no tunnel reservation
route optimization fail

Table 3.1: Different cases of mobility-aware QoS NSLP nodes

or to the HoA the resulting messages are tunneled to the HA and back incurring a
serious delay on the way. Only in tunnel mode and for the inner tunnel reservation
should the HoA be used as the source of the MRS with the HA. Depending on
the mobility service implementation, special operations may be required to force
communication from the CoA directly. This is discussed in more detail in Chapter
4.3.

3.5 Overhead due to MobileIPv6

We mentioned that MIP6 uses special IP6 extension headers to carry information
about the HoA in route-optimized flows. These options impose a serious overhead on
packets that are route-optimized. The overhead can amount to as much as 48 byte
if both sides of the flow are mobile nodes. The same is true for tunnel-mode where
an entire new IP-header is appended for the tunnel encapsulation. If the tunnel is
protected by IPSEC there is even more overhead. For typical applications that need
QoS—such as real-time video and audio exchange—a per-packet overhead of 40+
bytes can mean a bandwidth increase of 50% (40 byte overhead / (40 byte IPv6
header + 20 byte UDP header + 20 byte codec payload1)). These applications tend

1e.g. G.729 (8 Kbps)

3.6. Requirements 23

MN
CoA

AR

HAMN
HoA

Tunneled
routing state
from/to HoA

direct
routing state
from/to CoA

Figure 3.11: Tunneled and Direct Routing State

to use a steady stream of relatively small packets in order to minimize the delay.
As the client application is oblivious of this overhead it will ask for a reservation
based on the unmodified packet size. It is then the job of the signaling application
to adjust the bandwidth according to the overhead. This is not trivial as the client
application usually does not specify a packet size and rate for the data it intends
to send, but instead provides other, more abstract configuration parameters—such
as bandwidth and bucket size. In order to calculate modified values to account for
the overhead, the signaling application has to deduct the mean packet size and rate
from these abstract parameters.

3.6 Requirements

In this chapter we have identified a number of problems that need solving in or-
der to provide functional QoS signaling in a mobile environment. The following
requirements for our implementation must be resolved:

1. The signaling application needs to be aware of active MobileIP bindings and
the resulting flow transformations.

2. The signaling stack (NTLP and NSLPs) must be aware of and react to mobility
events.

3. The QoS-application must be aware of additional overhead induced by Mo-
bileIP specific extension headers or the tunnel encapsulation.

4. The signaling application must signal for the actual flow instead of for the
logical flow as provided by the user applications requesting signaling from the
signaling application.

24 3. Analysis

5. The signaling stack must be able to communicate from the CoA directly.

Most of these depend on information available to the MIP6-daemon and thus we
need an efficient way to obtain this information from it. In addition we need to
decide where and in what form this information is required and design the interface
accordingly. The next chapter will discuss this in detail.

3.7 Summary

The analysis so far shows that the QoS-NSLP is already well equipped to deal with
mobility. The existence of a static SESSION-ID that is independent of the flow ad-
dress information allows for easy correlation of messages for the same session before
and after a movement. The existing re-routing handling provides a good abstrac-
tion and can be reused without much modification to handle mobility events as well.
In route-optimization the required modifications and interactions with the mobility
management are limited to the flow sender. For tunnel-mode additional modifica-
tions and interaction is required at the HomeAgent. In addition, the modifications
are limited to the initial setup of a reservation and handling of mobility events. No
modifications of the normal processing are otherwise required.

4. Design and Implementation

As mentioned before, most of the theoretical details about what to signal are already
described in the mobility draft [13] and presented in Chapter 3.2. In our design we
can focus on the problem of how to realize and implement the outlined signaling
processes. The analysis in Chapter 3.6 summarizes the problems that need to be
solved. This chapter provides a more detailed look at each problem in the specific
environment and a high level solution. Further down herein we also discuss the
actual implementation of the required services and changes.

4.1 Flow Info Service

One of the most fundamental problems we have identified during our analysis is
the fact that we need to break the transparency of MobileIP and to provide means
for the signaling application to query state from the MobileIP management service.
In addition we require the MobileIP management service to send notifications to
the signaling application for significant events, such as handovers, new CoAs and a
change in the binding cache and binding update list. While there is a specification for
a MobileIP6 management information base in [7] that would allow implementation
independent access to the required information, the MIB is not implemented in any
of the MIP6 services available to us at the time. Instead it was decided to roll an
implementation specific service that provides only the required functionality. We
call this Flow Info Service for its primary functionality.

The basic mode of operation is a request-response mechanism, as show in Figure
4.1. The signaling application sends a request indicating that it wishes to retrieve
information about a certain flow. The Flow Info Service replies with the current
state of that flow. In addition the Flow Info Service sends notifications whenever
the state of an active flow changes. This provides mobility event triggers required
by QoS NSLP to issue updating RESERVE or QUERY messages. This way the
consumer (the signaling application) is able to cache the results provided by the
Flow Info Service, but does not need to bootstrap and mirror the complete state
in the MobileIP management. A lazy implementation can fall back to querying the
state over and over, i.e. a polling mode.

26 4. Design and Implementation

The request needs to describe a flow, the information required for that are two IP-
addresses (source and destination). No other information is required. The reply
needs to describe three possible flow states:

1. No MobileIP flow – because the source is not a HoA of the node or there is no
active binding for the destination. It might turn out later on that the peer is
a mobile node, but for the moment the flow is sent unmodified.

2. Tunnel mode – the flow will enter or exit a tunnel at the current node, on
the MN or the HA respectively. This happens when the flow source is a HoA
and the peer is either MobileIP unaware or there is no binding established for
it, yet. In addition to the state itself that response has to include the tunnel
source and destination in order to enable the signaling application to establish
a bound session for the tunnel section or update an existing session accordingly.
Future implementations might want to provide a tunnel id that would make
it possible to demultiplex the flow inside the tunnel on intermediate tunnel
nodes, e.g by copying the IPv6 flow label or DSCP from the inner packet
header. Currently there is no possibility to distinguish flows inside the tunnel.
The tunnel-draft [15] has more details about tunnel-ids.

3. Route optimization – there is an active binding for this flow and the flow
source and/or flow destination will be rewritten. The information required in
the reply consists of the new flow addresses.

Figure 4.1 gives a summary of the contents of the messages exchanged in the Flow
Info Service.

Every reply should additionally indicate the per-packet overhead that is incurred by
the translation. Even though this information can be deducted from the transfor-
mation itself, parts of it might be implementation specific. Finally, the reply should
carry enough of the original request to enable parallel operation. The simplest so-
lution is to quote the complete flow that is concerned. Requests are handled in the
same order in which they arrive, consecutive requests for the same flow result in
several replies with the requested information. This allows the client to issue paral-
lel requests for different flows and from more than one consumer (in our case NSLP
and NTLP) over a single Flow Info Service connection.

The notifications also use the reply message format and simply inform the client
(the signaling application) about the new state of a flow. If the client cares about
the state that was in effect before the event it will have to deduct that from its own
state.

On the signaling application side we have to consider where and how to make the
Flow Info Service available to the different application parts. The general spirit of
separation of a network aware transport layer and a somewhat network unaware sig-
naling layer would suggest that this service should only be required in the transport
layer, which would then notify the signaling layer with information that is of interest
to it. With the current interface design between transport and signaling layer, where
the signaling layer has to provide the flow information (the MRI) for any message
it wants delivered, this is not easily possible. It was considered to let the transport
layer translate the MRI on the fly with the information available from the Flow Info

4.1. Flow Info Service 27

Flow Info Reply / Notification

Original Flow:
Source IP6 address
Destination IP6 address

Flow Status:
None, Tunnel, Route Opt.

New Flow:
Source/Tunnel Source IP6
Destination/Tunnel Dest. IP6

Overhead

(Tunnel ID)

Flow Info Request

Flow:
Source IP6 address
Destination IP6 address

Signaling Application MobileIPv6 DaemonUnix Domain Socket

Figure 4.1: Messages for the Flow Info Service

Service. This would keep the separation. A similar mechanism was proposed to deal
with network address translation (which is a similar problem) in the NAT-traversal
draft [10, section 5.3]. It was decided, however, that this approach is not applicable
when dealing with mobility as the signaling layer requires very specific knowledge
of the flow status to function properly. While the MRI translation service could
hide the addressing details, the transport layer would still have to provide a large
amount of other information about the flows. It was decided that the interface
extensions required to convey this information were too extensive. Instead the sig-
naling layer is given direct access to the Flow Info Service and must provide correct
flow information to the transport layer. This has the downside that every signaling
application has to be made mobility aware, eventhough it might not require special
handling. Considering the currently specified applications: Quality-of-Service and
NAT-firewall—which both require rather extensive changes—it seems unlikely that
future signaling applications could work without extensive knowledge of the mobil-
ity status. In addition, this design gives the most flexibility in implementing the
mobility changes in the QoS-NSLP.

Figure 4.2 shows the placement and partitioning of the Flow Info Service and how
the different components communicate with each other. The following sections de-
scribe the individual components in detail and specify the protocols for the various
interfaces.

4.1.1 Flow Info Service – Provider

In order to export BindingCache and other mobility state information from the
MIP6-daemon to the signaling application we added a Unix Domain Socket interface
to the daemon code. The unix domain socket interface allows for inter-process
communication. It uses a fixed packet size and allows for four types of packets that
closely follow the previously described findings. The implementation allows for a

28 4. Design and Implementation

protlibQoS NSLP

LibGIST

●Data types

●Message queues

●Intra/Inter-module
exchange

●Timers

●Addresslists

QoS-FSM
statemodule

RMF

QoS-

Sessions
Context

GIST-FSM
statemodule MRS

MA
SII-list

TPoverUDP TPoverTCP TPoverSCTP TPquery
Encap

MobileIPv6 Daemon

Binding
Update List

Binding
Cache

MIP6 signalingFlow Info Service Flow Info
Service

 Flow Info Service API

Process A Process B

IPC via Unix
Domain Socket

Figure 4.2: The Flow Info Service Placement

fixed number of concurrent clients that can be configured at compile time. For every
client a new thread is spawned that accepts requests, looks up the information and
sends a reply or error in return. If a mobility event occurs, the main thread iterates
through all connected clients and sends an event datagram with the information
relating to the mobility event.

4.1.2 Flow Info Service – Consumer

On the client side of the Flow Info Service (in the QoS-signaling application) both
the NTLP and the QoS-NSLP layer need direct access to the service. In the current
form, both layers reside in the same binary and address space so that they can share
a common Unix Domain Socket connection with the provider. In the future it may
be possible to have the NTLP and NSLP reside in different address spaces where
each component would need to open a Flow Info Service connection with the MIP6-
daemon on its own. The handling of the UDS messaging is hidden behind a class
that provides a single, convenient interface to lookup information for a flow. As the
NTLP already provides a data structure that describes a flow—the Message Routing
Information—this data structure is reused for the Flow Info Service interface as well.
This is particularly convenient as most of the operations required by the NSLP evolve
around the translation from a logical MRI to the actual MRI.

The interface looks as follows:
Flowstatus *get_flowinfo(mri_pathcoupled &orig_mri);

4.2. Quality-of-Service NSLP changes 29

with“Flowstatus”resembling the same information as available in a Flow Info Service
reply or event in terms of the data types available to the NTLP:

struct Flowstatus {

enum flowstatus_t {

fs_nothing, /* no active binding -> no transformation */

fs_normal, /* active RO binding -> route-optimization */

fs_tunnel, /* active non-MIP binding -> tunnel mode */

fs_home /* home binding -> route-optimization */

};

flowstatus_t type;

mri_pathcoupled orig_mri;

mri_pathcoupled *new_mri;

mri_pathcoupled *tunnel_id;

uint32 pp_overhead;

};

The interface is part of a class object. At start-up the QoS-Application spawns a
single thread of this class that will try to connect to the MIP6-daemon over the UDS
and manage the socket. All interested parties are given access to the thread object
and through that to the get_flowinfo interface. At the moment requests over the
high-level interface are translated verbatim into a Flow Info Request and sent to the
MIP6d and vice versa with the reply. Future improvements can easily implement
caching at that place to avoid unnecessary UDS traffic, context switches, and other
overhead. Casual measurement of the request delay suggests, however, that there is
little reason for concern at the moment.

In addition to the get_flowinfo interface, the socket managing thread will also
listen for event datagrams. On receipt of a notification, the thread sends an internal
message to the NTLP layer. After NTLP has completed any actions that are required
from its point of view (at the moment there is nothing in this category) the NTLP
layer sends a special NetworkNotification to all locally connected NSLPs with the
original MRI as reported in the event. The message must be delivered to all NSLPs
as the NTLP does not have access to information regarding the logical flow and it
can not deduct the old flow (prior to movement) from the information available at
the time of the event.

4.2 Quality-of-Service NSLP changes

The changes to the operation of the QoS-NSLP required to work in a mobile envi-
ronment have been outlined in Chapter 3.1. To recap, the client application asks
the QoS-NSLP to establish a reservation for a flow. The flow provided is the logical
flow as seen by the client application and it is the QoS-NSLP’s job to translate this
request to a reservation for the actual flow as seen by the MIP6 management. Once
the reservation has been established, the QoS-NSLP must listen to MIP6 events that
change the actual flow for this reservation and renew it accordingly.

In the NSIS implementation we use, this process works as follows: The client ap-
plication sends a preliminary RESERVE or QUERY message to the QoS-NSLP

30 4. Design and Implementation

over a client API. The QoS-NSLP transforms this request into a real RESERVE or
QUERY message by assigning a SESSION-ID and turns it into a valid NSIS PDU.
The message is then handed off to the QoS-statemodule that implements the Finite
State Machine (FSM) described in the QoS-NSLP draft. The statemodule creates
a context for the reservation, installs required state at the local node and hands the
message off to the NTLP layer for delivery. Processing of incoming messages is also
implemented inside the statemodule, as well as processing of GIST NetworkNotifi-
cation messages. The statemodule is thus the natural point to perform any mobility
transformations to the messages as well as the hook point to process mobility events.

QoS-NSLP

NTLP

Client

QoS Request
for

logical flow

store logical flow id
Flow Info Lookup

transformation

Tunnel Reservation
for

logical tunnel flowFlow Info
Service

1

2

3
4

5

Figure 4.3: Mobility processing of initial QoS-client requests

Upon receiving the first RESERVE or QUERY message from the client API the
statemodule queries the Flow Info Service to check if mobility processing is required.
If this is the case, the logical flow information is stored in the created context and
the message is modified for the actual flow. If tunnel mode is in effect a second
RESERVE or QUERY message is generated for the tunnel flow and sent through
the normal processing. The process is depicted in Figure 4.3. The message for the
tunnel reservation is generated with the logical tunnel flow id—between the MN’s
HoA and the primary HA address—initially, and thus allows the same processing
for the tunnel reservation as for a normal reservation. This approach simplifies the
code a great deal as no special processing is required to react to mobility events for
tunneled reservations. Instead the tunnel reservation is updated automatically by
the mobility event for the logical tunnel flow.

The processing of mobility events is shown in Figure 4.4. Mobility events from the
Flow Info Service are sent to the NTLP that then transforms the event into a Net-
workNotification API call to the NSLPs. We introduce two new NetworkNotification
types to convey mobility events: Home Binding Update and Binding Update. Both
carry the MRI for logical flow. As with other NetworkNotification events, it is the
job of the NSLP to figure out which, if any, of its active sessions are affected. The
QoS-NSLP uses the stored logical flow id to lookup any such context. We had to
add a new access structure to handle this lookup. Previously the QoS-NSLP was

4.2. Quality-of-Service NSLP changes 31

QoS-NSLP

NTLP

MIP6

NetworkNotification
with

logical flow id

Lookup context
Flow Info Lookup

update context
Send update

messages

Flow Info
Service

Mobility Event

1
2

3

4 5

Figure 4.4: Processing of mobility events

only able to look up a context by its SESSION-ID as our NTLP always provided
this information as well—in contrast to the definition in the GIST draft. This is no
longer the case, as the NSLP has no means of informing the NTLP of the logical
flow identification after the transformation has been applied and thus the NTLP
can not look up the corresponding session. After identifying an affected context the
QoS-NSLP queries the Flow Info Service for the new MIP6 state, compares it to the
state of the reservation and—if required—sends messages to update the reservation
accordingly.

As described in Chapter 3.3, the receiver of a reservation has limited possibilities to
react if it receives a reservation for a logical flow for which the local Flow Info Ser-
vice indicates a different actual flow. For the moment, our implementation simply
assumes that the sender has the correct information and no mobility processing is
applied for received messages. Even for the receiver-initiated case, the flow receiver
depends on the flow sender to issue a new QUERY with the updated flow informa-
tion. This again greatly simplifies the code as only the flow sender is aware of the
logical flow and only it must react to mobility events. All other QoS nodes simply
react to QoS-NSLP messages in the same way they react to ordinary, non-mobile
messages.

The only changes to the normal processing of received messages concerns the han-
dling of the old path after a new reservation has been established. In order to
send a TEAR message on this path, the Cross-Over-Nodes (CRN) need to—in some
situations—store the old flow MRI. Other than that, the normal re-routing process-
ing readily provides the needed operations that are required after a re-routing caused
by mobility. Even detecting the CRN can be done in the same way as detecting the
branching or merging node after a normal re-routing event—by watching for changes
of the SII-handle for the connected up- or downstream peer. It turned out that the
provided code had some defects in this area as the draft documents have been in

32 4. Design and Implementation

flux about this in recent months. The required fixes for mobility, however, directly
fixed the same issues for normal re-routing events.

QoS-NSLP

NTLP

Message from
Neighbor

QoS-Processing
Forward

Outgoing Processing
Flow Info Lookup

Tunnel Reservation on HA

Flow Info
Service

1

2

3

4

6

5

7

Figure 4.5: Processing of incoming messages on the HA

The one exception to the rule that there is no special mobility processing required
upon receiving a message, is the Home Agent, in the case where the CN is the flow
sender and tunnel mode is in effect. The processing is shown in Figure 4.5. In this
scenario the HA is the entry point for the tunnel and has to take care of the tunnel
reservation. The required processing, however, can be done after the HA forwards
the initial RESERVE or QUERY message. Because of the way the statemodule is
currently implemented, every forwarded message goes through the same processing
as a locally created message. This way the code to create a tunnel reservation from
the HA or the MN is the same, hooked into the processing of outgoing messages.

4.3 Source Address Selection

As discussed in the Analysis (Chapter 3.4) we have to take special provisions in
order to select the correct address when building Message Routing State from or
to the Mobile Node. When MIP6 is in use a normal socket will always bind to the
HoA in order to keep the mobility transparent to the application. If we want to
use the CoA instead, we have to manually bind the socket to it after creation. In
order to do so, we have to look up the current CoA first. This problem is solved
with the advanced API described in RFC 5040 [11]. Unfortunately, the current
implementation available for the Linux kernel is broken, so we had to introduce a
local alternative. Our implementation receives the interface that carries the CoA
as a configuration parameter and uses standard API calls to get the address(es)
configured on that interface. After checking that the address is neither the HoA nor
a link-local address we have a good guess for the CoA. This approach is limited in

4.3. Source Address Selection 33

many ways, but good enough for our test environment. As long as no working RFC
5040 implementation is available, this is the only approach available. This lookup
work-around is hidden behind a generic interface that will allow to replace it with a
proper RFC 5040 API call once available.

We use the CoA, whenever we issue a GIST-Query or -Response, as the IP-source of
the datagram as well as for the Interface Address in the Network Layer Information
object that is used by the receiver of the message to build the Message Routing
State or Messaging Association later on. Only if the Message Routing Information
indicates that we really want to use the MRS/MA to signal from or to the HoA we
use the HoA as source address directly. This makes sure that signaling messages for
the tunneled flow enter the tunnel as they are supposed to. In addition, while the
MN is at its home network there is not necessarily a CoA available so we have to
build the MRS/MA from the HoA directly.

4.3.1 The Home Agent to Mobile Node GIST-Query Issue

For the issue described in Section 3.1.2 and depicted in Figure 3.3 where the GIST-
Query from the HA to the MN does not enter the tunnel in some situations, we
had to implement a local, environment specific solution. In order to avoid the
resulting problems, we assign a secondary address to the Home Agent. This address
is excluded from route optimization on every Mobile Node and used by the HA as
the IP-source for GIST-Queries that are supposed to enter the tunnel. This requires
additional configuration on the HA and MNs, but allows for a quick and efficient
work around. Currently there is no other general approach known to tackle this
issue otherwise.

34 4. Design and Implementation

5. Evaluation

To develop and evaluate the changes for mobility we are using an environment
consisting of six virtual hosts connected to a “smart switch”. This setup allows us
to easily perform all possible mobility events. This chapter describes the setup in
some detail and provides measurements of the signaling performance and delay.

5.1 The Testing Environment

Our testing environment consists of six virtual hosts: The Mobile Node, Home
Agent and Correspondent Node as well as three Access Routers. The Home Agent
and Access Routers are connected as shown in Figure 5.1 to build a topology that
allows us to exercise various movement patterns. The Mobile Node moves between
the Home Network and the three access networks, while the Correspondent Node
is located in the access network provided by Access Router 1. Each Access Router
as well as the Home Agent has installed static routes to the other routers and to
the various networks provided by them. Each AR acts as default router in its
network and sends fast (minimum delay as per RFC3775 [5], 0.03-0.07s) Router
Advertisements—indicated by the circles in the figure. The MN and CN obtain an
address in the network they are located in at the moment—indicated by the squares.
In addition the MN has a HomeAddress in the Home Network that stays with it and
is used for all reservations as logical source or destination. All virtual hosts run a
slightly modified version of the Linux kernel with patches from the USAGI project
in order to provide mobility functionality.

The topology is setup on a smart switch by bridging VLAN interfaces exported from
the virtual environment. The smart switch runs the FreeBSD operating system and
Wireshark to obtain packet capture dumps of the complete network traffic in the
whole topology. This provides easy access to the complete signaling message ex-
change between the nodes and has proven to be a very powerful tool during initial
prototyping and debugging. It also allows us to obtain accurate and easy measure-
ments of the delay between a handover event and the resulting signaling exchange.
In contrast to solutions where packet dumps are captured at each individual node,
we do not have to correlate the individual dumps and need not account for clock

36 5. Evaluation

AR3
Net

AR2
Net

AR1
Net

Home
Net HA AR1

AR2

AR3MN

Movement

CN
v4 v7

v13

v15

v16

v17

v14

v8v5

v1

v10

Virtual Environment
on PC1

Smart Switch
FreeBSD 7
if_bridge(4)

ipfw(4)
dummynet(4)

wireshark

vlans

Packet
dumps

PC2

Physical Gigabit Ethernet Link

Figure 5.1: Test environment network layout

skew on the various nodes. As the smart switch is running on real hardware and
all packets have to travel over a physical wire (twice), we are also not in danger of
beneficial virtualization effects on the measurements and can assume that we obtain
an upper bound for measurements performed on real hardware. We will, however,
only be able to measure the time difference as observed on the smart switch. This
is not a problem as the delay between the smart switch and the virtual nodes is well
within the sub-microsecond range, while our measurements—as we will see later in
the chapter—are up to four magnitudes larger.

5.2 Functional Evaluation

To evaluate if our implementation does perform the signaling as we have designed,
we look at packet capture dumps from the smart switch and compare them with
what we have drawn up before. The following figures are a visualization of the
packet dump quoted—in full—in the appendix.

5.2.1 MN Sender, Sender-Initiated Reservation

The scenario we walk through in its entirety is the following: The MN is the flow
sender creating a sender-initiated reservation from the HoA to the CN. Initially the
MN is at its home network. The creation of the initial reservation is shown in Figure
5.2 (cf. Appendices A.1.1 and A.1.2 for the packet dump).

After a while the MN moves to AR3, obtains a new CoA, updates the mobility
bindings with the HA and the CN and the reservation. This is shown in Figure
5.3 (cf. Appendix A.1.3-A.1.4). QoS-NSLP messages with the old MRI are drawn

5.2. Functional Evaluation 37

MN
sender

HoA CoA1 CoA3

HA

1st 2nd

AR3 AR2 AR1 CN
receiver

GIST-Query
 GIST-Response
GIST-Confirm
RESERVE

GIST-Query
 GIST-Response
GIST-Confirm
RESERVE

GIST-Query
GIST-Response
GIST-Confirm
RESERVE
RESPONSE

 RESPONSE
 RESPONSE

RESERVE

RESERVE
RESERVE

Initial Reservation

Hop-to-Hop
Refreshes

Figure 5.2: Initial Reservation Setup

dashed and marked with a “*” in the packet dump in the appendix. Note that the
actual packet dump shows a short period of tunnel mode operation while the MN
has not yet collected the tokens required to update the binding with the CN. As
discussed before, we are not creating a reservation for the tunnel flow immediately
and route-optimization is established quickly enough.

Figure 5.3 also illustrates our understanding of the signaling delay. We regard the
time between receiving the Binding Acknowledgement (BA) from the CN and the
final RESPONSE at the MN as the setup delay. Respectively, the time between
receiving the BA at the MN and the RESERVE(TEAR) at the CRN is the tear
down delay. This measurement points gives the time that is used by only the sig-
naling application to negotiate. We purposely neglect the additional delay that is
incurred by the MobileIPv6 signaling as well as the time the MIP6d needs to de-
tect the new CoA. It is out of the scope of this work to optimize these times. It
should be noted, however, that using the binding acknowledgement as trigger for
the reservation update is a quite pessimistic approach. While this gives the earliest
point in time when the new CoA can be used for route-optimized communication,
there is room for optimization by taking a more optimistic approach. For instance,
we could use sending of the binding update to the CN as the trigger, assuming that
the CN will indeed acknowledge the binding. This way we would save a full round
trip time. As our focus lies on constructing a functional prototype we leave these
optimizations for further work in this area.

In the example dump we are looking at the following packets for the setup delay:

212 23.720472 1 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement
260 23.768795 1 AR3(ar3) MN(ar3) GIST Data, RESPONSE

We calculate a setup delay of under 50ms to update a reservation spanning five
NSLP hops. During this test we did not add artificial delay (hop-to-hop round trip

38 5. Evaluation

GIST-Query
 GIST-Response
GIST-Confirm
RESERVE

MN
sender

HoA CoA1 CoA3

HA

1st 2nd

AR3 AR2 AR1 CN
receiver

BU
 BA

HomeTestInit
 HomeTest

Care-of-Test-Init
 Care-of-Test

BindingUpdate
 BindingAck

GIST-Response
GIST-Confirm
RESERVE

GIST-Query

GIST-Response
GIST-Confirm
RESERVE

GIST-Query

GIST-Response
GIST-Confirm
RESERVE

GIST-Query
 NOTIFY

 NOTIFY

RESPONSE
 RESPONSE

 RESPONSE
 RESPONSE

RESERVE(TEAR)
RESERVE(TEAR)

RESERVE

RESERVE

RESERVE

RESERVE

MobileIPv6
Signaling

Reservation
Update from
new CoA

CRN Processing

Hop-to-Hop
Refreshes

Reservation
Setup Delay

Old Path
Tear Delay

Figure 5.3: Handover to AR3 and Reservation Update

5.2. Functional Evaluation 39

times are below 1ms) at the smart switch, so this number gives a good idea of the
processing overhead alone. We should note that the times given by the packet dump
are the times the respective packets are observed at the smart switch and not at the
final destination, but since we are looking for time differences between two packets
this does not matter. The time between the smart switch and the final destination
can assumed to be uniform with the tiny absolute delay between smart switch and
the virtual nodes as compared to the measured difference.

For the tear down delay we have a special case after leaving home. The MN can still
communicate with the HA from the HoA and thusly issue an immediate tear. We
measure roughly 52ms to tear a reservation spanning three NSLP hops:

212 23.720472 1 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement
268 23.772840 7 HA(inet) AR1(inet) GIST Data, RESERVE(TEAR)*

After some time settling at AR3 the MN moves to AR1 from where it can communi-
cate with the CN directly. We choose this movement pattern to evaluate the longest
and shortest reservation in terms of NSLP hops in our environment. The resulting
exchange is shown in Figure 5.4 (cf. Appendix A.1.6).

MN
sender

HoA CoA1 CoA3

HA

1st 2nd

AR3 AR2 AR1 CN
receiver

BU
 BA

Care-of-Test-Init
 Care-of-Test
BindingUpdate
 BindingAck

 GIST-Response
GIST-Confirm
RESERVE

GIST-Query

NOTIFY
 NOTIFY

TEAR

MobileIPv6
Signaling

Reservation
Update from
new CoA

CRN Processing

Reservation
Setup Delay

Old Path
Tear Delay

 NOTIFY
 NOTIFY

 RESPONSE

TEAR
TEAR

Figure 5.4: Handover to AR1 and Reservation Update

This time we observe the normal CRN processing in case of a sender-initiated reser-
vation after movement of the flow sender. AR3 is trying to deliver the NOTIFY
to the MN at the old CoA and fails. After some time during which refreshing RE-
SERVEs are sent for the new and the old path at the same time (cf. Appendix
A.1.7, not show in the figure), AR3 realizes that it is the dead-end and sends a
TEAR down the old path (cf. Appendix A.1.8). The TEAR is forwarded all the
way down to the CN which is also the CRN and stops forwarding of the TEAR from
the old path silently.

Calculating the delays for this case we have to look at the following packets:

40 5. Evaluation

392 60.753212 1 CN(ar1) MN(ar1) MIPv6 Binding Acknowledgement
404 60.760651 1 CN(ar1) MN(ar1) GIST Data, RESPONSE
455 71.547837 10 AR1(ar1) CN(ar1) GIST Data, RESERVE(TEAR)*

We measure 7.4ms for the setup delay for a one hop reservation and almost 11s for
the tear delay. The latter only depends on the lifetime of the routing state between
the MN at the old CoA and AR3. The process could be sped up by requesting an
acknowledgement at the QoS-NSLP level for the NOTIFY message. This way the
QoS-NSLP at AR3 would realize much faster that the MN is no longer available and
could free the resources on the old path much earlier. The QoS-NSLP draft includes
a mechanism to request hop-to-hop acknowledgments so this is another optimization
that my be tackled in future work.

GIST-Query
 GIST-Response
GIST-Confirm
RESERVE

GIST-Response
GIST-Confirm
RESERVE

GIST-Query

GIST-Response
GIST-Confirm
RESERVE

GIST-Query

GIST-Response
GIST-Confirm
RESERVE

GIST-Query

RESPONSE
 RESPONSE

 RESPONSE
 RESPONSE

RESERVE

RESERVE

RESERVE

RESERVE

Reservation
Update from
new CoA

CRN Processing

Hop-to-Hop
Refreshes

Old Path
Tear Delay

MN
sender

HoA CoA1 CoA3

HA

1st 2nd

AR3 AR2 AR1 CN
receiver

BU
 BA
Care-of-Test-Init
 Care-of-Test
BindingUpdate
 BindingAck

MobileIPv6
Signaling

 NOTIFY

Reservation
Setup Delay

Figure 5.5: Handover AR1 back to AR3 and Reservation Update

Now we have a handover back to AR3. This is interesting in order to look at the
CRN processing at the receiver (the CN in this scenario). As can be seen in Figure
5.5 (cf. Appendix A.1.10) the receiving node performs the normal CRN processing
by sending a NOTIFY on the old path as soon as it receives the RESERVE from
a new upstream node (change from MN to AR1). This NOTIFY message does not
reach the MN as it is no longer available on CoA1. There is no further tear, as there

5.2. Functional Evaluation 41

is in fact no old path left. The new reservation is otherwise updated and refreshed
as normal.

Finally, in the packet dump shown in the appendix (A.1.13 through A.1.15) we have
a handover back to the home network. There is nothing special about this except
that the new CoA is the HoA and all nodes react appropriately. Please refer to the
textual packet dump for details.

5.2.2 CN Sender, Sender-Initiated Reservation

Now we invert the direction of the flow. The CN becomes the flow sender and the
MN the flow receiver, still using sender-initiated reservation. This is interesting
because in this case a movement will result in a change of the downstream peer of
the CRN allowing for a direct tear down of the old path. Figure 5.6 (cf. A.2) shows
process of a handover for the MN moving from AR3 to AR1. This is an extract from
the benchmark dump discussed in detail further down.

MN
sender

HoA CoA1 CoA3

HA

1st 2nd

AR3 AR2 AR1 CN
receiver

BU
 BA

Care-of-Test-Init
 Care-of-Test
BindingUpdate
 BindingAck
 GIST-Query
GIST-Response
 GIST-Confirm
 RESERVE
RESPONSE

TEAR
TEAR

TEAR
TEAR

MobileIPv6
Signaling

Reservation
Update to
new CoA

CRN Processing

Reservation
Setup Delay

Old Path
Tear Delay

Figure 5.6: Handover AR1 back to AR3 and Reservation Update

As shown in the figure, the MIP6 update procedure works the same as before from
the MN to the CN, but the reservation is done in the opposite direction. In order
to obtain the same measurement points for the setup and tear down delay, we now
use the time when the CN receives the binding update message as the start of the
measured time. The CN is also a CRN—it sees a change in its downstream peer from
AR1 to MN as it receives the GIST-Response. At that time, the CRN saves the old
MRI (CN to CoA3) and sends a TEAR message down the old path as soon as the
RESPONSE is processed and thus the new reservation is in place. The processing
for a movement from AR1 to AR3 is very similar, only this time the TEAR message
is sent to the MN at CoA1 directly (where it is no longer available).

To calculate the delay we have to look at the following packets:

12 0.009932 10 MN(ar1) CN(ar1) MIPv6 Binding Update
25 0.020173 1 MN(ar1) CN(ar1) GIST Data, RESPONSE
32 0.025687 16 AR2(inet2) AR3(inet2) GIST Data, RESERVE(TEAR)*

42 5. Evaluation

We measure 10ms for the setup over two NSLP hops and 16ms for the tear down
over four hops.

5.2.3 Receiver-Initiated Reservations

The receiver-initiated case is not that much different compared to the sender-initiated
case, only that the first message after the GIST handshake is a QUERY instead of
a RESERVE. Unfortunately, this causes severe confusion in the SII-handle change
processing and thus in the CRN detection and processing. We were not able to make
CRN processing work on the flow sender or receiver without profoundly reworking
the complete handling of receiver-initiated reservations as a whole. It was decided
to accept the missing tear-down of the old path in this case. In cases where the
CRN is a QNE (and not QNI/QNR) the CRN processing is working as expected.

5.3 Signaling Performance Benchmarks

We evaluate the signaling performance based on the time between receiving the
BA/BU on the MN/CN respectively and the time when the final RESPONSE for
the new reservation is received. These are the same numbers that are mentioned in
the functional evaluation above.

We sample this time over 50 consecutive movements of the MN between AR3 to
AR2 to AR1 and back. The resulting reservations span either a single hop (MN to
CN), four (MN, AR2, AR1, CN) or five hops (MN, AR3, AR2, AR1, CN). We also
measure the time it takes before the old path is properly torn down. This is only
measured for the old path between AR2 and AR3 after a movement from AR3 to
AR2 as there is not necessarily a tear down for the short path.

The following Table gives the median1 over the 50 runs2. Figure 5.7 provides a visual
representation of these numbers.

Testcase AR1 setup AR2 setup AR3 setup tear

MN sender, sender-initiated 11.8ms 26.9ms 37.5ms 20.6s
CN sender, sender-initiated 13.3ms 27.4ms 40.3ms 26.8ms
MN sender, receiver-initiated 11.3ms 29.0ms 43.1ms 28.0ms
CN sender, receiver-initiated 12.5ms 33.4ms 42.2ms 31.9ms

Table 5.1: Reservation Setup and Old Path Tear Delay After Movement

Again these tests have been performed without adding artificial delay at the smart
switch and a resulting round trip time between the virtual hosts of under 1ms. Dur-
ing these tests we identified the problem in our implementation regarding the CRN
operation on the flow sender or receiver in receiver-initiated mode. Due to problems
with the current state of the SII-handle change processing—already mentioned at
the end of Section 4.2—we were unable to fix this particular problem. As a result
we do not issue explicit tear down messages on the old path in these scenarios. The

1We prefer the median over the arithmetic average to be more resilient to outliers
2Please refer to Appendix B for the raw numbers

5.3. Signaling Performance Benchmarks 43

10

20

30

40

ms

AR1 AR2 AR3

MN SI

MN RI

CN SI

CN RI

Figure 5.7: Setup Delay for Different Hop-Counts and Modes

impact of this is limited, however, as the old path will time out eventually. As
mentioned earlier, this is not a problem when the CRN is a QNE.

The fact that there is little to no difference between the sender- and receiver-initiated
case while at AR1 is also due to the missing CRN processing on the receiver. The
additional overhead and half round trip for the QUERY seems to be roughly the
same as the overhead to generate the NOTIFY or RESERVE(TEAR) message that
is sent before the RESPONSE in sender-initiated mode.

The relative high number for the tear down delay when the MN is the flow sender
and QNI is again due to the way the CRN processing works. As discussed in during
the example above, the process could be sped up using hop-to-hop acknowledgments
for the NOTIFY message at the QoS-NSLP level.

Now we introduce additional delay on the smart switch to see how much of the
processing overhead can be amortized in typical Internet scenarios. We configured
50ms symmetric delay between AR1 and AR2 and another 25ms between AR2 and
AR3. The access networks remain unchanged. We use the IPFW2 packet filter and
dummynet[12] to simulate these link properties. With these settings we measure
104ms round trip time between the MN and the CN while the MN is at the access
network of AR2, and 160ms while at AR3. The slight difference from the configured
values (100ms/150ms respectively) is due to scheduling granularity and additional
overhead for the queueing on the smart host. The numbers were obtained using the
ping6(8) utility with 600 samples over a one minute interval, reporting a standard
deviation of under 2ms in both cases.

These numbers allow us to project the theoretical, optimal delay for the reservation
setup. For sender-initiated reservations we count: GIST-Query and GIST-Response
(one round trip), GIST-Confirm/RESERVE and RESPONSE (one round trip): Two
round trips total. In sender-initiated mode there is an additional half round trip for
the QUERY i.e. two and a half round trips total:

Our measurements in face of the delay give the following numbers, this time over 50
movements between AR2 and AR3—again the median is given:

44 5. Evaluation

Testcase AR2 optimal delay AR3 optimal delay

sender-initiated 208ms (2RTT) 320ms (2RTT)
receiver-initiated 260ms (2.5RTT) 400ms (2.5RTT)

Table 5.2: Theoretical Optimal Reservation Setup Delay

Testcase AR2 setup delay AR3 setup delay

MN sender, sender-initiated 228.8ms 348.9ms
CN sender, sender-initiated 231.5ms 353.1ms
MN sender, receiver-initiated 285.5ms 429.3ms
CN sender, receiver-initiated 287.8ms 429.1ms

Table 5.3: Measured Reservation Setup Delay

Or in terms of overhead compared to the theoretical, optimal performance see Table
5.4.

Testcase AR2 setup overhead AR3 setup overhead

MN sender, sender-initiated 20.8ms 28.9ms
CN sender, sender-initiated 23.5ms 33.1ms
MN sender, receiver-initiated 25.5ms 29.3ms
CN sender, receiver-initiated 27.8ms 29.1ms

Table 5.4: Difference Between Measurements and Theoretic Optimum

Figure 5.8 visualizes the difference between the optimal and measured setup delay.

These numbers are slightly better than what we obtained without delay (cf. Table
5.1) where we did not attempt to remove the 1-2ms round trip times. The fact that
they are otherwise very similar suggests that these numbers are non-dependent on
the hop-to-hop delay and represent the static processing overhead.

Finally we look at the time it takes to process the mobility trigger event by mea-
suring the time between the BindingUpdate/BindingAcknowledgement and GIST-
Query that starts the signaling process. The following numbers are collected over
all movement events from all benchmarks performed. There is no difference between
sender- or receiver-initiated mode for these numbers.

Testcase Mobility trigger delay

MN 1.93ms
CN 2.54ms

Table 5.5: Mobility Trigger Processing Overhead

The absolute time is very small and—as we are only looking at externally observable
events—includes not only the trigger event processing itself, but also the generation

5.4. Summary 45

100

200

300

400

ms

AR2 AR3

MN SI

MN RI

CN SI

CN RI

Figure 5.8: Setup Delay and Overhead

of the Query message that has to be done regardless. The slightly longer delay on
the CN is due to the fact that the MIP6d has to prepare and send the BindingAc-
knowledgement message before it issues the trigger.

5.4 Summary

We ran an extensive testsuite to verify other test cases such as the switch from
tunnel mode to route-optimization and vice versa, leaving and returning home as
well as different CRN scenarios. With the exception of the aforementioned issue
with CRN processing in receiver-initiated mode all these tests were successfull. The
signaling performance numbers from the previous section show that even our proof-
of-concept implementation is able to provide sensible performance and that the
suggested interface with the mobility management does not pose a bottleneck.

46 5. Evaluation

6. Summary and further directions

In this work we were able to show that the NSIS protocol drafts for the QoS-NSLP
and GIST are well-equipped to deal with mobility. No changes at protocol level
were required to implement functional mobility support. The only change from the
drafts is the introduction of a new type for the NetworkNotification-API call to
propagate mobility events from GIST to NSLPs. Most other issues identified during
this work revolve around implementation problems and can only be solved with
regard to the specific implementation environment. We also identified one serious
issue in relation to tunnel mode (see Section 3.1.2 for details). There is currently no
satisfying solution to this problem available. We introduce a possible work-around
in Section 4.3.1 that resolves the problem at the cost of additional configuration
and administrative overhead. The mobility-draft [13] gives a good overview of the
general problem of signaling in mobile environments, but—in our opinion—does not
give sufficient detail in some areas where implementation issues are concerned. It
would help if some of the points presented in the early draft [16] where reiterated in
the current document—especially the discussion of different flow identifiers.

Our implementation currently serves as a proof-of-concept and there are a number of
possible optimizations for further work in this area: A more optimistic trigger point
could be used for the mobility events. Instead of using full message routing state
setup, the QoS-NSLP data could be transported in the GIST-Query. Experiments
with Message Associations should be conducted, too. Tear-down of the old path
can be sped up. In addition, as our work is only concerned with inter-domain
handovers, there are a number of possible optimizations when looking at intra-
domain handovers, too.

We were able to provide a fully mobility-aware QoS-Signaling Application with rel-
atively little changes to a pre-existing, not-mobility-aware implementation, showing
that the work in the NSIS working group was indeed conducted with mobility in
mind.

48 6. Summary and further directions

A. Evaluation Packet Dumps

A.1 MN Sender in Sender-Initiated Mode

The following packet dump shows the complete packet exchange for a sender-initiated
reservation in the topology described in Chapter 5.1 and shown in Figure 5.1. The
VLAN numbers quoted below are also shown in that figure. The dump is split up
into logical parts as described in Chapter 5.2. Source and destination addresses
are replaced with symbolic names of the node and network they belong to. The
“inet”-network refers to the network that connects the HA, AR1 and AR2. “inet2” is
the interconnect between AR2 and AR3. As described earlier we had to assign two
addresses to the HA in order to avoid problems with the creation of tunneled routing
state from the HA to the MN. The primary address is “HA(home:1)”. “HA(home:2)”
is the address used to establish routing state. The MN’s HoA is “MN(home)”.

A.1.1 Initial Reservation

No. Time VLAN Source Destination Protocol Info
1 0.000000 1 MN(home) CN(ar1) GIST Query
Message routing information object

Object Header
MRI type: 0
Flags: 0x00
IP version: 6
Flags: 0x800 (P)
Source address: MN(home)
Destination address: CN(ar1)
Source address prefix: 0
Destination address prefix: 0
Protocol: UDP (0x11)

2 0.000007 5 MN(home) CN(ar1) GIST Query
3 0.003753 5 HA(home:2) MN(home) GIST Response
4 0.003757 1 HA(home:2) MN(home) GIST Response
5 0.009123 1 MN(home) HA(home:2) GIST Confirm
6 0.009127 5 MN(home) HA(home:2) GIST Confirm
7 0.009130 1 MN(home) HA(home:2) GIST Data, RESERVE
8 0.009134 5 MN(home) HA(home:2) GIST Data, RESERVE
9 0.013703 4 HA(inet) CN(ar1) GIST Query

50 A. Evaluation Packet Dumps

10 0.013712 7 HA(inet) CN(ar1) GIST Query
11 0.017781 7 AR1(inet) HA(inet) GIST Response
12 0.017790 4 AR1(inet) HA(inet) GIST Response
13 0.022205 4 HA(inet) AR1(inet) GIST Confirm
14 0.022210 7 HA(inet) AR1(inet) GIST Confirm
15 0.023403 4 HA(inet) AR1(inet) GIST Data, RESERVE
16 0.023408 7 HA(inet) AR1(inet) GIST Data, RESERVE
17 0.029141 8 AR1(ar1) CN(ar1) GIST Query
18 0.029149 10 AR1(ar1) CN(ar1) GIST Query
19 0.041884 10 CN(ar1) AR1(ar1) GIST Response
20 0.041888 8 CN(ar1) AR1(ar1) GIST Response
21 0.042912 8 AR1(ar1) CN(ar1) GIST Confirm
22 0.042917 10 AR1(ar1) CN(ar1) GIST Confirm
23 0.043415 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
24 0.043420 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
25 0.047139 10 CN(ar1) AR1(ar1) GIST Data, RESPONSE
26 0.047144 8 CN(ar1) AR1(ar1) GIST Data, RESPONSE
27 0.048494 7 AR1(inet) HA(inet) GIST Data, RESPONSE
28 0.048500 4 AR1(inet) HA(inet) GIST Data, RESPONSE
29 0.050877 5 HA(home:2) MN(home) GIST Data, RESPONSE
30 0.050884 1 HA(home:2) MN(home) GIST Data, RESPONSE

A.1.2 Hop-to-Hop Refreshes
31 4.854890 1 MN(home) HA(home:2) GIST Data, RESERVE
32 4.854898 5 MN(home) HA(home:2) GIST Data, RESERVE
33 4.916383 4 HA(inet) AR1(inet) GIST Data, RESERVE
34 4.916416 7 HA(inet) AR1(inet) GIST Data, RESERVE
35 6.499409 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
36 6.499416 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
37 8.500395 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
38 8.500405 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
39 9.854521 1 MN(home) HA(home:2) GIST Data, RESERVE
40 9.854530 5 MN(home) HA(home:2) GIST Data, RESERVE
41 9.918490 4 HA(inet) AR1(inet) GIST Data, RESERVE
42 9.918501 7 HA(inet) AR1(inet) GIST Data, RESERVE
43 11.500673 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
44 11.500682 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
45 13.855628 1 MN(home) HA(home:2) GIST Data, RESERVE
46 13.855636 5 MN(home) HA(home:2) GIST Data, RESERVE
47 14.530320 8 AR1(ar1) CN(ar1) GIST Query
48 14.530330 10 AR1(ar1) CN(ar1) GIST Query
49 14.531332 10 CN(ar1) AR1(ar1) GIST Response
50 14.531338 8 CN(ar1) AR1(ar1) GIST Response
51 14.532047 8 AR1(ar1) CN(ar1) GIST Confirm
52 14.532051 10 AR1(ar1) CN(ar1) GIST Confirm
53 14.919215 4 HA(inet) AR1(inet) GIST Data, RESERVE
54 14.919225 7 HA(inet) AR1(inet) GIST Data, RESERVE
55 15.500903 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
56 15.500912 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
57 17.918821 4 HA(inet) AR1(inet) GIST Data, RESERVE
58 17.918828 7 HA(inet) AR1(inet) GIST Data, RESERVE
59 18.501543 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
60 18.501548 10 AR1(ar1) CN(ar1) GIST Data, RESERVE

A.1.3 Handover to AR3 - Tunnel Mode
61 18.621585 1 MN(ar3) HA(home:1) MIPv6 Binding Update
62 18.621590 17 MN(ar3) HA(home:1) MIPv6 Binding Update

A.1. MN Sender in Sender-Initiated Mode 51

63 18.621809 16 MN(ar3) HA(home:1) MIPv6 Binding Update
64 18.621815 15 MN(ar3) HA(home:1) MIPv6 Binding Update
65 18.622065 13 MN(ar3) HA(home:1) MIPv6 Binding Update
66 18.622071 4 MN(ar3) HA(home:1) MIPv6 Binding Update
67 18.710294 1 MN(home) CN(ar1) GIST Query
68 18.710301 17 MN(home) CN(ar1) GIST Query
69 18.710579 16 MN(home) CN(ar1) GIST Query
70 18.710584 15 MN(home) CN(ar1) GIST Query
71 18.710977 13 MN(home) CN(ar1) GIST Query
72 18.710983 4 MN(home) CN(ar1) GIST Query
73 18.711700 1 MN(home) CN(ar1) MIPv6 Home Test Init
74 18.711704 17 MN(home) CN(ar1) MIPv6 Home Test Init
75 18.711879 16 MN(home) CN(ar1) MIPv6 Home Test Init
76 18.711883 15 MN(home) CN(ar1) MIPv6 Home Test Init
77 18.711991 1 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
78 18.711994 17 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
79 18.712158 16 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
80 18.712161 15 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
81 18.712425 13 MN(home) CN(ar1) MIPv6 Home Test Init
82 18.712428 4 MN(home) CN(ar1) MIPv6 Home Test Init
83 18.712535 13 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
84 18.712538 7 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
85 18.713657 8 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
86 18.713661 10 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
87 18.714244 10 CN(ar1) MN(ar3) MIPv6 Care-of Test
88 18.714247 8 CN(ar1) MN(ar3) MIPv6 Care-of Test
89 18.715486 7 CN(ar1) MN(ar3) MIPv6 Care-of Test
90 18.715491 13 CN(ar1) MN(ar3) MIPv6 Care-of Test
91 18.715834 15 CN(ar1) MN(ar3) MIPv6 Care-of Test
92 18.715840 16 CN(ar1) MN(ar3) MIPv6 Care-of Test
93 18.716047 17 CN(ar1) MN(ar3) MIPv6 Care-of Test
94 18.716051 1 CN(ar1) MN(ar3) MIPv6 Care-of Test
95 18.831495 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
96 18.831502 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
97 18.831602 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
98 18.831606 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
99 18.831790 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
100 18.831795 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
101 18.832054 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
102 18.832059 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
103 18.832321 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
104 18.832325 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
105 18.832500 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
106 18.832505 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
107 19.710184 1 MN(home) CN(ar1) GIST Query
108 19.710193 17 MN(home) CN(ar1) GIST Query
109 19.710408 16 MN(home) CN(ar1) GIST Query
110 19.710414 15 MN(home) CN(ar1) GIST Query
111 19.710658 13 MN(home) CN(ar1) GIST Query
112 19.710664 4 MN(home) CN(ar1) GIST Query
113 19.712659 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
114 19.712664 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
115 19.713315 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
116 19.713320 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
117 19.713523 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
118 19.713527 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
119 19.855937 1 MN(home) HA(home:2) GIST Data, RESERVE
120 19.855946 17 MN(home) HA(home:2) GIST Data, RESERVE
121 19.856194 16 MN(home) HA(home:2) GIST Data, RESERVE

52 A. Evaluation Packet Dumps

122 19.856200 15 MN(home) HA(home:2) GIST Data, RESERVE
123 19.856489 13 MN(home) HA(home:2) GIST Data, RESERVE
124 19.856495 4 MN(home) HA(home:2) GIST Data, RESERVE
125 20.039062 4 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
126 20.039070 13 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
127 20.039372 15 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
128 20.039379 16 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
129 20.039611 17 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
130 20.039616 1 HA(home:1) MN(ar3) ICMPv6 Unreachable (Port unreachable)
131 20.122215 1 MN(ar3) HA(home:1) MIPv6 Binding Update
132 20.122221 17 MN(ar3) HA(home:1) MIPv6 Binding Update
133 20.122444 16 MN(ar3) HA(home:1) MIPv6 Binding Update
134 20.122450 15 MN(ar3) HA(home:1) MIPv6 Binding Update
135 20.122760 13 MN(ar3) HA(home:1) MIPv6 Binding Update
136 20.122767 4 MN(ar3) HA(home:1) MIPv6 Binding Update
137 20.266539 4 HA(inet) CN(ar1) GIST Query
138 20.266547 7 HA(inet) CN(ar1) GIST Query
139 20.267871 7 AR1(inet) HA(inet) GIST Response
140 20.267877 4 AR1(inet) HA(inet) GIST Response
141 20.268995 4 HA(inet) AR1(inet) GIST Confirm
142 20.269000 7 HA(inet) AR1(inet) GIST Confirm
143 20.270258 4 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
144 20.270263 13 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
145 20.270489 15 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
146 20.270495 16 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
147 20.270672 4 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
148 20.270677 13 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
149 20.270709 17 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
150 20.270714 1 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
151 20.270967 15 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
152 20.270972 16 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
153 20.271195 17 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
154 20.271200 1 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
155 21.710926 1 MN(home) CN(ar1) GIST Query
156 21.710936 17 MN(home) CN(ar1) GIST Query
157 21.711167 16 MN(home) CN(ar1) GIST Query
158 21.711173 15 MN(home) CN(ar1) GIST Query
159 21.711459 13 MN(home) CN(ar1) GIST Query
160 21.711467 4 MN(home) CN(ar1) GIST Query
161 21.712898 4 HA(home:2) MN(home) GIST Response
162 21.712905 13 HA(home:2) MN(home) GIST Response
163 21.713084 15 HA(home:2) MN(home) GIST Response
164 21.713090 16 HA(home:2) MN(home) GIST Response
165 21.713266 17 HA(home:2) MN(home) GIST Response
166 21.713272 1 HA(home:2) MN(home) GIST Response
167 21.714195 1 MN(home) HA(home:2) GIST Confirm
168 21.714201 17 MN(home) HA(home:2) GIST Confirm
169 21.714368 16 MN(home) HA(home:2) GIST Confirm
170 21.714373 15 MN(home) HA(home:2) GIST Confirm
171 21.714619 13 MN(home) HA(home:2) GIST Confirm
172 21.714624 4 MN(home) HA(home:2) GIST Confirm
173 21.919103 4 HA(inet) AR1(inet) GIST Data, RESERVE
174 21.919115 7 HA(inet) AR1(inet) GIST Data, RESERVE
175 23.502293 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
176 23.502297 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
177 23.713281 1 MN(home) CN(ar1) MIPv6 Home Test Init
178 23.713286 17 MN(home) CN(ar1) MIPv6 Home Test Init
179 23.713563 16 MN(home) CN(ar1) MIPv6 Home Test Init
180 23.713569 15 MN(home) CN(ar1) MIPv6 Home Test Init

A.1. MN Sender in Sender-Initiated Mode 53

181 23.713784 13 MN(home) CN(ar1) MIPv6 Home Test Init
182 23.713788 4 MN(home) CN(ar1) MIPv6 Home Test Init
183 23.714116 4 MN(home) CN(ar1) MIPv6 Home Test Init
184 23.714120 7 MN(home) CN(ar1) MIPv6 Home Test Init
185 23.714290 8 MN(home) CN(ar1) MIPv6 Home Test Init
186 23.714295 10 MN(home) CN(ar1) MIPv6 Home Test Init
187 23.714779 10 CN(ar1) MN(home) MIPv6 Home Test
188 23.714784 8 CN(ar1) MN(home) MIPv6 Home Test
189 23.714950 7 CN(ar1) MN(home) MIPv6 Home Test
190 23.714956 4 CN(ar1) MN(home) MIPv6 Home Test
191 23.715488 4 CN(ar1) MN(home) MIPv6 Home Test
192 23.715493 13 CN(ar1) MN(home) MIPv6 Home Test
193 23.715676 15 CN(ar1) MN(home) MIPv6 Home Test
194 23.715682 16 CN(ar1) MN(home) MIPv6 Home Test
195 23.716097 17 CN(ar1) MN(home) MIPv6 Home Test
196 23.716102 1 CN(ar1) MN(home) MIPv6 Home Test

A.1.4 Handover to AR3 - Route-optimized

197 23.716784 1 MN(ar3) CN(ar1) MIPv6 Binding Update
198 23.716789 17 MN(ar3) CN(ar1) MIPv6 Binding Update
199 23.717418 16 MN(ar3) CN(ar1) MIPv6 Binding Update
200 23.717422 15 MN(ar3) CN(ar1) MIPv6 Binding Update
201 23.717735 13 MN(ar3) CN(ar1) MIPv6 Binding Update
202 23.717739 7 MN(ar3) CN(ar1) MIPv6 Binding Update
203 23.718019 8 MN(ar3) CN(ar1) MIPv6 Binding Update
204 23.718024 10 MN(ar3) CN(ar1) MIPv6 Binding Update
205 23.718810 10 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement
206 23.718813 8 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement
207 23.719011 7 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement
208 23.719015 13 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement
209 23.720266 15 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement
210 23.720270 16 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement
211 23.720467 17 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement
212 23.720472 1 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement

213 23.722132 1 MN(ar3) CN(ar1) GIST Query
Message routing information object

Object Header
MRI type: 0
Flags: 0x00
IP version: 6
Flags: 0x800 (P)
Source address: MN(ar3)
Destination address: CN(ar1)
Source address prefix: 128
Destination address prefix: 0
Protocol: UDP (0x11)

214 23.722137 17 MN(ar3) CN(ar1) GIST Query
215 23.726605 17 AR3(ar3) MN(ar3) GIST Response
216 23.726610 1 AR3(ar3) MN(ar3) GIST Response
217 23.732232 1 MN(ar3) AR3(ar3) GIST Confirm
218 23.732236 17 MN(ar3) AR3(ar3) GIST Confirm
219 23.732239 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
220 23.732242 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
221 23.737756 16 AR3(inet2) CN(ar1) GIST Query
222 23.737764 15 AR3(inet2) CN(ar1) GIST Query
223 23.743691 15 AR2(inet2) AR3(inet2) GIST Response

54 A. Evaluation Packet Dumps

224 23.743700 16 AR2(inet2) AR3(inet2) GIST Response
225 23.745032 16 AR3(inet2) AR2(inet2) GIST Confirm
226 23.745039 15 AR3(inet2) AR2(inet2) GIST Confirm
227 23.745557 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
228 23.745561 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
229 23.752856 13 AR2(inet) CN(ar1) GIST Query
230 23.752865 7 AR2(inet) CN(ar1) GIST Query
231 23.754184 7 AR1(inet) AR2(inet) GIST Response
232 23.754189 13 AR1(inet) AR2(inet) GIST Response
233 23.755226 13 AR2(inet) AR1(inet) GIST Confirm
234 23.755232 7 AR2(inet) AR1(inet) GIST Confirm
235 23.755694 13 AR2(inet) AR1(inet) GIST Data, RESERVE
236 23.755698 7 AR2(inet) AR1(inet) GIST Data, RESERVE
237 23.756939 7 AR1(inet) HA(inet) GIST Data, NOTIFY*
238 23.756944 4 AR1(inet) HA(inet) GIST Data, NOTIFY*
239 23.757809 8 AR1(ar1) CN(ar1) GIST Query
240 23.757814 10 AR1(ar1) CN(ar1) GIST Query
241 23.759482 10 CN(ar1) AR1(ar1) GIST Response
242 23.759489 8 CN(ar1) AR1(ar1) GIST Response
243 23.759645 4 HA(home:2) MN(home) GIST Data, NOTIFY*
244 23.759650 13 HA(home:2) MN(home) GIST Data, NOTIFY*
245 23.759926 15 HA(home:2) MN(home) GIST Data, NOTIFY*
246 23.759932 16 HA(home:2) MN(home) GIST Data, NOTIFY*
247 23.760210 17 HA(home:2) MN(home) GIST Data, NOTIFY*
248 23.760216 1 HA(home:2) MN(home) GIST Data, NOTIFY*
249 23.760658 8 AR1(ar1) CN(ar1) GIST Confirm
250 23.760663 10 AR1(ar1) CN(ar1) GIST Confirm
251 23.761174 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
252 23.761178 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
253 23.763173 10 CN(ar1) AR1(ar1) GIST Data, RESPONSE
254 23.763179 8 CN(ar1) AR1(ar1) GIST Data, RESPONSE
255 23.764478 7 AR1(inet) AR2(inet) GIST Data, RESPONSE
256 23.764485 13 AR1(inet) AR2(inet) GIST Data, RESPONSE
257 23.765935 15 AR2(inet2) AR3(inet2) GIST Data, RESPONSE
258 23.765944 16 AR2(inet2) AR3(inet2) GIST Data, RESPONSE
259 23.768787 17 AR3(ar3) MN(ar3) GIST Data, RESPONSE
260 23.768795 1 AR3(ar3) MN(ar3) GIST Data, RESPONSE
261 23.770635 1 MN(home) HA(home:2) GIST Data, RESERVE(TEAR)*
262 23.770662 17 MN(home) HA(home:2) GIST Data, RESERVE(TEAR)*
263 23.770896 16 MN(home) HA(home:2) GIST Data, RESERVE(TEAR)*
264 23.770902 15 MN(home) HA(home:2) GIST Data, RESERVE(TEAR)*
265 23.771172 13 MN(home) HA(home:2) GIST Data, RESERVE(TEAR)*
266 23.771179 4 MN(home) HA(home:2) GIST Data, RESERVE(TEAR)*
267 23.772832 4 HA(inet) AR1(inet) GIST Data, RESERVE(TEAR)*
268 23.772840 7 HA(inet) AR1(inet) GIST Data, RESERVE(TEAR)*

A.1.5 At AR3: Hop-to-Hop Refreshes

269 23.855794 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
270 23.855804 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
271 27.181178 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
272 27.181186 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
273 27.416567 13 AR2(inet) AR1(inet) GIST Data, RESERVE
274 27.416579 7 AR2(inet) AR1(inet) GIST Data, RESERVE
275 27.502663 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
276 27.502670 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
277 28.857577 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
278 28.857583 17 MN(ar3) AR3(ar3) GIST Data, RESERVE

A.1. MN Sender in Sender-Initiated Mode 55

279 29.104851 8 AR1(ar1) CN(ar1) GIST Query
280 29.104859 10 AR1(ar1) CN(ar1) GIST Query
281 29.105766 10 CN(ar1) AR1(ar1) GIST Response
282 29.105771 8 CN(ar1) AR1(ar1) GIST Response
283 29.106521 8 AR1(ar1) CN(ar1) GIST Confirm
284 29.106526 10 AR1(ar1) CN(ar1) GIST Confirm
285 29.857511 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
286 29.857516 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
287 31.182990 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
288 31.182997 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
289 32.416355 13 AR2(inet) AR1(inet) GIST Data, RESERVE
290 32.416363 7 AR2(inet) AR1(inet) GIST Data, RESERVE
291 32.907731 16 AR3(inet2) CN(ar1) GIST Query
292 32.907738 15 AR3(inet2) CN(ar1) GIST Query
293 32.908838 15 AR2(inet2) AR3(inet2) GIST Response
294 32.908843 16 AR2(inet2) AR3(inet2) GIST Response
295 32.909773 16 AR3(inet2) AR2(inet2) GIST Confirm
296 32.909777 15 AR3(inet2) AR2(inet2) GIST Confirm
297 33.503413 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
298 33.503420 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
299 34.858226 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
300 34.858233 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
301 37.182174 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
302 37.182182 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
303 37.417825 13 AR2(inet) AR1(inet) GIST Data, RESERVE
304 37.417835 7 AR2(inet) AR1(inet) GIST Data, RESERVE
305 37.859685 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
306 37.859692 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
307 38.503569 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
308 38.503576 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
309 39.814209 13 AR2(inet) CN(ar1) GIST Query
310 39.814218 7 AR2(inet) CN(ar1) GIST Query
311 39.815113 7 AR1(inet) AR2(inet) GIST Response
312 39.815118 13 AR1(inet) AR2(inet) GIST Response
313 39.815848 13 AR2(inet) AR1(inet) GIST Confirm
314 39.815852 7 AR2(inet) AR1(inet) GIST Confirm
315 39.834480 8 AR1(ar1) CN(ar1) GIST Query
316 39.834489 10 AR1(ar1) CN(ar1) GIST Query
317 39.835647 10 CN(ar1) AR1(ar1) GIST Response
318 39.835652 8 CN(ar1) AR1(ar1) GIST Response
319 39.836308 8 AR1(ar1) CN(ar1) GIST Confirm
320 39.836313 10 AR1(ar1) CN(ar1) GIST Confirm
321 39.875436 8 AR1(ar1) CN(ar1) GIST Query
322 39.875448 10 AR1(ar1) CN(ar1) GIST Query
323 39.876365 10 CN(ar1) AR1(ar1) GIST Response
324 39.876370 8 CN(ar1) AR1(ar1) GIST Response
325 39.877171 8 AR1(ar1) CN(ar1) GIST Confirm
326 39.877175 10 AR1(ar1) CN(ar1) GIST Confirm
327 41.183187 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
328 41.183196 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
329 41.534393 1 MN(ar3) CN(ar1) GIST Query
330 41.534402 17 MN(ar3) CN(ar1) GIST Query
331 41.535462 17 AR3(ar3) MN(ar3) GIST Response
332 41.535467 1 AR3(ar3) MN(ar3) GIST Response
333 41.536355 1 MN(ar3) AR3(ar3) GIST Confirm
334 41.536360 17 MN(ar3) AR3(ar3) GIST Confirm
335 42.504126 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
336 42.504134 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
337 42.859812 1 MN(ar3) AR3(ar3) GIST Data, RESERVE

56 A. Evaluation Packet Dumps

338 42.859822 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
339 44.417723 13 AR2(inet) AR1(inet) GIST Data, RESERVE
340 44.417733 7 AR2(inet) AR1(inet) GIST Data, RESERVE
341 46.184568 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
342 46.184575 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
343 47.859425 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
344 47.859435 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
345 48.817323 13 AR2(inet) CN(ar1) GIST Query
346 48.817335 7 AR2(inet) CN(ar1) GIST Query
347 48.818355 7 AR1(inet) AR2(inet) GIST Response
348 48.818362 13 AR1(inet) AR2(inet) GIST Response
349 48.819167 13 AR2(inet) AR1(inet) GIST Confirm
350 48.819173 7 AR2(inet) AR1(inet) GIST Confirm
351 49.505237 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
352 49.505247 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
353 50.859442 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
354 50.859451 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
355 51.418648 13 AR2(inet) AR1(inet) GIST Data, RESERVE
356 51.418656 7 AR2(inet) AR1(inet) GIST Data, RESERVE
357 52.185063 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
358 52.185069 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
359 52.506058 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
360 52.506064 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
361 55.233612 16 AR3(inet2) CN(ar1) GIST Query
362 55.233620 15 AR3(inet2) CN(ar1) GIST Query
363 55.234717 15 AR2(inet2) AR3(inet2) GIST Response
364 55.234724 16 AR2(inet2) AR3(inet2) GIST Response
365 55.235441 16 AR3(inet2) AR2(inet2) GIST Confirm
366 55.235446 15 AR3(inet2) AR2(inet2) GIST Confirm
367 55.861016 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
368 55.861025 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
369 56.184588 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
370 56.184599 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
371 56.420297 13 AR2(inet) AR1(inet) GIST Data, RESERVE
372 56.420307 7 AR2(inet) AR1(inet) GIST Data, RESERVE
373 57.506474 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
374 57.506478 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
375 59.420254 13 AR2(inet) AR1(inet) GIST Data, RESERVE
376 59.420262 7 AR2(inet) AR1(inet) GIST Data, RESERVE

A.1.6 Handover to AR1

377 60.742141 1 MN(ar1) HA(home:1) MIPv6 Binding Update
378 60.742147 8 MN(ar1) HA(home:1) MIPv6 Binding Update
379 60.742389 7 MN(ar1) HA(home:1) MIPv6 Binding Update
380 60.742395 4 MN(ar1) HA(home:1) MIPv6 Binding Update
381 60.743437 4 HA(home:1) MN(ar1) MIPv6 Binding Acknowledgement
382 60.743441 7 HA(home:1) MN(ar1) MIPv6 Binding Acknowledgement
383 60.749343 8 HA(home:1) MN(ar1) MIPv6 Binding Acknowledgement
384 60.749348 1 HA(home:1) MN(ar1) MIPv6 Binding Acknowledgement
385 60.751322 1 MN(ar1) CN(ar1) MIPv6 Care-of Test Init
386 60.751325 10 MN(ar1) CN(ar1) MIPv6 Care-of Test Init
387 60.751756 10 CN(ar1) MN(ar1) MIPv6 Care-of Test
388 60.751761 1 CN(ar1) MN(ar1) MIPv6 Care-of Test
389 60.752335 1 MN(ar1) CN(ar1) MIPv6 Binding Update
390 60.752340 10 MN(ar1) CN(ar1) MIPv6 Binding Update
391 60.753206 10 CN(ar1) MN(ar1) MIPv6 Binding Acknowledgement
392 60.753212 1 CN(ar1) MN(ar1) MIPv6 Binding Acknowledgement

A.1. MN Sender in Sender-Initiated Mode 57

393 60.754686 1 MN(ar1) CN(ar1) GIST Query
Message routing information object

Object Header
MRI type: 0
Flags: 0x00
IP version: 6
Flags: 0x800 (P)
Source address: MN(ar1)
Destination address: CN(ar1)
Source address prefix: 128
Destination address prefix: 0
Protocol: UDP (0x11)

394 60.754693 10 MN(ar1) CN(ar1) GIST Query
395 60.755788 10 CN(ar1) MN(ar1) GIST Response
396 60.755796 1 CN(ar1) MN(ar1) GIST Response
397 60.757484 1 MN(ar1) CN(ar1) GIST Confirm
398 60.757490 10 MN(ar1) CN(ar1) GIST Confirm
399 60.758839 1 MN(ar1) CN(ar1) GIST Data, RESERVE
400 60.758849 10 MN(ar1) CN(ar1) GIST Data, RESERVE
401 60.760110 10 CN(ar1) AR1(ar1) GIST Data, NOTIFY*
402 60.760119 8 CN(ar1) AR1(ar1) GIST Data, NOTIFY*
403 60.760644 10 CN(ar1) MN(ar1) GIST Data, RESPONSE
404 60.760651 1 CN(ar1) MN(ar1) GIST Data, RESPONSE
405 60.761838 7 AR1(inet) AR2(inet) GIST Data, NOTIFY*
406 60.761848 13 AR1(inet) AR2(inet) GIST Data, NOTIFY*
407 60.763520 15 AR2(inet2) AR3(inet2) GIST Data, NOTIFY*
408 60.763532 16 AR2(inet2) AR3(inet2) GIST Data, NOTIFY*
409 60.765241 17 AR3(ar3) MN(ar3) GIST Data, NOTIFY*

A.1.7 At AR1: Hop-to-Hop Refreshes for old and new path

410 60.954115 8 AR1(ar1) CN(ar1) GIST Query*
411 60.954129 10 AR1(ar1) CN(ar1) GIST Query*
412 60.954918 10 CN(ar1) AR1(ar1) GIST Response*
413 60.954927 8 CN(ar1) AR1(ar1) GIST Response*
414 60.955926 8 AR1(ar1) CN(ar1) GIST Confirm*
415 60.955931 10 AR1(ar1) CN(ar1) GIST Confirm*
416 61.185140 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE*
417 61.185153 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE*
418 61.861044 1 MN(ar1) CN(ar1) GIST Data, RESERVE
419 61.861071 10 MN(ar1) CN(ar1) GIST Data, RESERVE
420 62.196374 13 AR2(inet) CN(ar1) GIST Query*
421 62.196385 7 AR2(inet) CN(ar1) GIST Query*
422 62.197437 7 AR1(inet) AR2(inet) GIST Response*
423 62.197443 13 AR1(inet) AR2(inet) GIST Response*
424 62.198254 13 AR2(inet) AR1(inet) GIST Confirm*
425 62.198258 7 AR2(inet) AR1(inet) GIST Confirm*
426 62.506613 8 AR1(ar1) CN(ar1) GIST Data, RESERVE*
427 62.506621 10 AR1(ar1) CN(ar1) GIST Data, RESERVE*
428 63.509084 8 AR1(ar1) CN(ar1) GIST Data, RESERVE*
429 63.509101 10 AR1(ar1) CN(ar1) GIST Data, RESERVE*
430 64.423049 13 AR2(inet) AR1(inet) GIST Data, RESERVE*
431 64.423062 7 AR2(inet) AR1(inet) GIST Data, RESERVE*
432 65.186682 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE*
433 65.186693 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE*
434 66.507951 8 AR1(ar1) CN(ar1) GIST Data, RESERVE*
435 66.507961 10 AR1(ar1) CN(ar1) GIST Data, RESERVE*

58 A. Evaluation Packet Dumps

436 67.862029 1 MN(ar1) CN(ar1) GIST Data, RESERVE
437 67.862037 10 MN(ar1) CN(ar1) GIST Data, RESERVE
438 69.508343 8 AR1(ar1) CN(ar1) GIST Data, RESERVE*
439 69.508351 10 AR1(ar1) CN(ar1) GIST Data, RESERVE*
440 70.187042 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE*
441 70.187049 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE*
442 70.425615 13 AR2(inet) AR1(inet) GIST Data, RESERVE*
443 70.425624 7 AR2(inet) AR1(inet) GIST Data, RESERVE*
444 71.470774 16 AR3(inet2) CN(ar1) GIST Query*
445 71.470782 15 AR3(inet2) CN(ar1) GIST Query*
446 71.471912 15 AR2(inet2) AR3(inet2) GIST Response*
447 71.471917 16 AR2(inet2) AR3(inet2) GIST Response*
448 71.472773 16 AR3(inet2) AR2(inet2) GIST Confirm*
449 71.472777 15 AR3(inet2) AR2(inet2) GIST Confirm*

A.1.8 At AR1: Old Path Teardown

450 71.544132 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE(TEAR)*
451 71.544139 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE(TEAR)*
452 71.545862 13 AR2(inet) AR1(inet) GIST Data, RESERVE(TEAR)*
453 71.545869 7 AR2(inet) AR1(inet) GIST Data, RESERVE(TEAR)*
454 71.547833 8 AR1(ar1) CN(ar1) GIST Data, RESERVE(TEAR)*
455 71.547837 10 AR1(ar1) CN(ar1) GIST Data, RESERVE(TEAR)*

A.1.9 At AR1: Hop-to-Hop Refreshes

456 72.862850 1 MN(ar1) CN(ar1) GIST Data, RESERVE
457 72.862856 10 MN(ar1) CN(ar1) GIST Data, RESERVE
458 73.072042 1 MN(ar1) CN(ar1) GIST Query
459 73.072055 10 MN(ar1) CN(ar1) GIST Query
460 73.072807 10 CN(ar1) MN(ar1) GIST Response
461 73.072814 1 CN(ar1) MN(ar1) GIST Response
462 73.073538 1 MN(ar1) CN(ar1) GIST Confirm
463 73.073543 10 MN(ar1) CN(ar1) GIST Confirm
464 78.863045 1 MN(ar1) CN(ar1) GIST Data, RESERVE
465 78.863057 10 MN(ar1) CN(ar1) GIST Data, RESERVE
466 83.864465 1 MN(ar1) CN(ar1) GIST Data, RESERVE
467 83.864475 10 MN(ar1) CN(ar1) GIST Data, RESERVE
468 88.866291 1 MN(ar1) CN(ar1) GIST Data, RESERVE
469 88.866302 10 MN(ar1) CN(ar1) GIST Data, RESERVE
470 90.498571 1 MN(ar1) CN(ar1) GIST Query
471 90.498581 10 MN(ar1) CN(ar1) GIST Query
472 90.499494 10 CN(ar1) MN(ar1) GIST Response
473 90.499500 1 CN(ar1) MN(ar1) GIST Response
474 90.500249 1 MN(ar1) CN(ar1) GIST Confirm
475 90.500255 10 MN(ar1) CN(ar1) GIST Confirm
476 93.866678 1 MN(ar1) CN(ar1) GIST Data, RESERVE
477 93.866684 10 MN(ar1) CN(ar1) GIST Data, RESERVE
478 94.865930 1 MN(ar1) CN(ar1) GIST Data, RESERVE
479 94.865937 10 MN(ar1) CN(ar1) GIST Data, RESERVE
480 96.865464 1 MN(ar1) CN(ar1) GIST Data, RESERVE
481 96.865472 10 MN(ar1) CN(ar1) GIST Data, RESERVE
482 101.866348 1 MN(ar1) CN(ar1) GIST Data, RESERVE
483 101.866357 10 MN(ar1) CN(ar1) GIST Data, RESERVE
484 103.560708 1 MN(ar1) CN(ar1) GIST Query
485 103.560716 10 MN(ar1) CN(ar1) GIST Query
486 103.561597 10 CN(ar1) MN(ar1) GIST Response

A.1. MN Sender in Sender-Initiated Mode 59

487 103.561603 1 CN(ar1) MN(ar1) GIST Response
488 103.562705 1 MN(ar1) CN(ar1) GIST Confirm
489 103.562710 10 MN(ar1) CN(ar1) GIST Confirm
490 105.867226 1 MN(ar1) CN(ar1) GIST Data, RESERVE
491 105.867237 10 MN(ar1) CN(ar1) GIST Data, RESERVE
492 108.867763 1 MN(ar1) CN(ar1) GIST Data, RESERVE
493 108.867771 10 MN(ar1) CN(ar1) GIST Data, RESERVE
494 110.867718 1 MN(ar1) CN(ar1) GIST Data, RESERVE
495 110.867726 10 MN(ar1) CN(ar1) GIST Data, RESERVE
496 113.612566 1 MN(ar1) CN(ar1) GIST Query
497 113.612577 10 MN(ar1) CN(ar1) GIST Query
498 113.613405 10 CN(ar1) MN(ar1) GIST Response
499 113.613410 1 CN(ar1) MN(ar1) GIST Response
500 113.614862 1 MN(ar1) CN(ar1) GIST Confirm
501 113.614867 10 MN(ar1) CN(ar1) GIST Confirm
502 116.868874 1 MN(ar1) CN(ar1) GIST Data, RESERVE
503 116.868883 10 MN(ar1) CN(ar1) GIST Data, RESERVE

A.1.10 Handover to AR3

504 120.886695 1 MN(ar3) HA(home:1) MIPv6 Binding Update
505 120.886702 17 MN(ar3) HA(home:1) MIPv6 Binding Update
506 120.886921 16 MN(ar3) HA(home:1) MIPv6 Binding Update
507 120.886927 15 MN(ar3) HA(home:1) MIPv6 Binding Update
508 120.887230 13 MN(ar3) HA(home:1) MIPv6 Binding Update
509 120.887236 4 MN(ar3) HA(home:1) MIPv6 Binding Update
510 120.887307 1 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
511 120.887310 17 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
512 120.887588 16 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
513 120.887592 15 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
514 120.887826 13 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
515 120.887831 7 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
516 120.888103 8 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
517 120.888108 10 MN(ar3) CN(ar1) MIPv6 Care-of Test Init
518 120.888779 4 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
519 120.888784 13 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
520 120.889995 15 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
521 120.890000 16 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
522 120.891269 10 CN(ar1) MN(ar3) MIPv6 Care-of Test
523 120.891275 8 CN(ar1) MN(ar3) MIPv6 Care-of Test
524 120.891525 7 CN(ar1) MN(ar3) MIPv6 Care-of Test
525 120.891530 13 CN(ar1) MN(ar3) MIPv6 Care-of Test
526 120.891824 15 CN(ar1) MN(ar3) MIPv6 Care-of Test
527 120.891828 16 CN(ar1) MN(ar3) MIPv6 Care-of Test
528 120.895566 17 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
529 120.895570 1 HA(home:1) MN(ar3) MIPv6 Binding Acknowledgement
530 120.895600 17 CN(ar1) MN(ar3) MIPv6 Care-of Test
531 120.895604 1 CN(ar1) MN(ar3) MIPv6 Care-of Test
532 120.896717 1 MN(ar3) CN(ar1) MIPv6 Binding Update
533 120.896721 17 MN(ar3) CN(ar1) MIPv6 Binding Update
534 120.896913 16 MN(ar3) CN(ar1) MIPv6 Binding Update
535 120.896918 15 MN(ar3) CN(ar1) MIPv6 Binding Update
536 120.897295 13 MN(ar3) CN(ar1) MIPv6 Binding Update
537 120.897299 7 MN(ar3) CN(ar1) MIPv6 Binding Update
538 120.897531 8 MN(ar3) CN(ar1) MIPv6 Binding Update
539 120.897535 10 MN(ar3) CN(ar1) MIPv6 Binding Update
540 120.902291 10 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement
541 120.902296 8 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement

60 A. Evaluation Packet Dumps

542 120.902569 7 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement
543 120.902574 13 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement
544 120.902790 15 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement
545 120.902794 16 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement
546 120.902994 17 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement
547 120.902998 1 CN(ar1) MN(ar3) MIPv6 Binding Acknowledgement

548 120.904962 1 MN(ar3) CN(ar1) GIST Query
Message routing information object

Object Header
MRI type: 0
Flags: 0x00
IP version: 6
Flags: 0x800 (P)
Source address: MN(ar3)
Destination address: CN(ar1)
Source address prefix: 128
Destination address prefix: 0
Protocol: UDP (0x11)

549 120.904967 17 MN(ar3) CN(ar1) GIST Query
550 120.912620 17 AR3(ar3) MN(ar3) GIST Response
551 120.912629 1 AR3(ar3) MN(ar3) GIST Response
552 120.914748 1 MN(ar3) AR3(ar3) GIST Confirm
553 120.914752 17 MN(ar3) AR3(ar3) GIST Confirm
554 120.914755 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
555 120.914759 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
556 120.927531 16 AR3(inet2) CN(ar1) GIST Query
557 120.927539 15 AR3(inet2) CN(ar1) GIST Query
558 120.929247 15 AR2(inet2) AR3(inet2) GIST Response
559 120.929251 16 AR2(inet2) AR3(inet2) GIST Response
560 120.930160 16 AR3(inet2) AR2(inet2) GIST Confirm
561 120.930165 15 AR3(inet2) AR2(inet2) GIST Confirm
562 120.930673 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
563 120.930677 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
564 120.932780 13 AR2(inet) CN(ar1) GIST Query
565 120.932789 7 AR2(inet) CN(ar1) GIST Query
566 120.934351 7 AR1(inet) AR2(inet) GIST Response
567 120.934357 13 AR1(inet) AR2(inet) GIST Response
568 120.935059 13 AR2(inet) AR1(inet) GIST Confirm
569 120.935064 7 AR2(inet) AR1(inet) GIST Confirm
570 120.935567 13 AR2(inet) AR1(inet) GIST Data, RESERVE
571 120.935572 7 AR2(inet) AR1(inet) GIST Data, RESERVE
572 120.937635 8 AR1(ar1) CN(ar1) GIST Query
573 120.937643 10 AR1(ar1) CN(ar1) GIST Query
574 120.944490 10 CN(ar1) AR1(ar1) GIST Response
575 120.944495 8 CN(ar1) AR1(ar1) GIST Response
576 120.945340 8 AR1(ar1) CN(ar1) GIST Confirm
577 120.945345 10 AR1(ar1) CN(ar1) GIST Confirm
578 120.945950 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
579 120.945954 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
580 120.948065 10 CN(ar1) MN(ar1) GIST Data, NOTIFY*
581 120.948072 8 CN(ar1) MN(ar1) GIST Data, NOTIFY*
582 120.948719 10 CN(ar1) AR1(ar1) GIST Data, RESPONSE
583 120.948723 8 CN(ar1) AR1(ar1) GIST Data, RESPONSE
584 120.950655 7 AR1(inet) AR2(inet) GIST Data, RESPONSE
585 120.950662 13 AR1(inet) AR2(inet) GIST Data, RESPONSE
586 120.951963 15 AR2(inet2) AR3(inet2) GIST Data, RESPONSE
587 120.951970 16 AR2(inet2) AR3(inet2) GIST Data, RESPONSE

A.1. MN Sender in Sender-Initiated Mode 61

588 120.953182 17 AR3(ar3) MN(ar3) GIST Data, RESPONSE
589 120.953188 1 AR3(ar3) MN(ar3) GIST Data, RESPONSE

A.1.11 At AR3: Hop-to-Hop Refreshes

590 122.193388 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
591 122.193398 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
592 124.514812 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
593 124.514829 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
594 124.869140 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
595 124.869146 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
596 126.429253 13 AR2(inet) AR1(inet) GIST Data, RESERVE
597 126.429264 7 AR2(inet) AR1(inet) GIST Data, RESERVE
598 126.515701 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
599 126.515710 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
600 128.195220 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
601 128.195231 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
602 129.870072 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
603 129.870083 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
604 130.850796 16 AR3(inet2) CN(ar1) GIST Query
605 130.850804 15 AR3(inet2) CN(ar1) GIST Query
606 130.851802 15 AR2(inet2) AR3(inet2) GIST Response
607 130.851807 16 AR2(inet2) AR3(inet2) GIST Response
608 130.852435 16 AR3(inet2) AR2(inet2) GIST Confirm
609 130.852440 15 AR3(inet2) AR2(inet2) GIST Confirm
610 132.195752 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
611 132.195760 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
612 132.430778 13 AR2(inet) AR1(inet) GIST Data, RESERVE
613 132.430787 7 AR2(inet) AR1(inet) GIST Data, RESERVE
614 133.516253 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
615 133.516260 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
616 133.870628 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
617 133.870635 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
618 134.027269 1 MN(ar3) CN(ar1) GIST Query
619 134.027278 17 MN(ar3) CN(ar1) GIST Query
620 134.027921 17 AR3(ar3) MN(ar3) GIST Response
621 134.027926 1 AR3(ar3) MN(ar3) GIST Response
622 134.029268 1 MN(ar3) AR3(ar3) GIST Confirm
623 134.029274 17 MN(ar3) AR3(ar3) GIST Confirm
624 136.195834 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
625 136.195845 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
626 136.430623 13 AR2(inet) AR1(inet) GIST Data, RESERVE
627 136.430632 7 AR2(inet) AR1(inet) GIST Data, RESERVE
628 136.518941 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
629 136.518951 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
630 137.195104 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
631 137.195114 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
632 137.872808 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
633 137.872817 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
634 139.451494 16 AR3(inet2) CN(ar1) GIST Query
635 139.451502 15 AR3(inet2) CN(ar1) GIST Query
636 139.452416 15 AR2(inet2) AR3(inet2) GIST Response
637 139.452421 16 AR2(inet2) AR3(inet2) GIST Response
638 139.454590 16 AR3(inet2) AR2(inet2) GIST Confirm
639 139.454596 15 AR3(inet2) AR2(inet2) GIST Confirm
640 140.196006 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
641 140.196017 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
642 140.517827 8 AR1(ar1) CN(ar1) GIST Data, RESERVE

62 A. Evaluation Packet Dumps

643 140.517835 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
644 140.615136 8 AR1(ar1) CN(ar1) GIST Query
645 140.615142 10 AR1(ar1) CN(ar1) GIST Query
646 140.616158 10 CN(ar1) AR1(ar1) GIST Response
647 140.616162 8 CN(ar1) AR1(ar1) GIST Response
648 140.616824 8 AR1(ar1) CN(ar1) GIST Confirm
649 140.616828 10 AR1(ar1) CN(ar1) GIST Confirm
650 140.871942 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
651 140.871950 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
652 141.430734 13 AR2(inet) AR1(inet) GIST Data, RESERVE
653 141.430743 7 AR2(inet) AR1(inet) GIST Data, RESERVE
654 143.253023 13 AR2(inet) CN(ar1) GIST Query
655 143.253034 7 AR2(inet) CN(ar1) GIST Query
656 143.254516 7 AR1(inet) AR2(inet) GIST Response
657 143.254523 13 AR1(inet) AR2(inet) GIST Response
658 143.255250 13 AR2(inet) AR1(inet) GIST Confirm
659 143.255255 7 AR2(inet) AR1(inet) GIST Confirm
660 143.518805 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
661 143.518810 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
662 144.196282 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
663 144.196295 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
664 144.872251 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
665 144.872263 17 MN(ar3) AR3(ar3) GIST Data, RESERVE
666 146.517653 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
667 146.517663 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
668 147.196696 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE
669 147.196705 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE
670 147.432894 13 AR2(inet) AR1(inet) GIST Data, RESERVE
671 147.432905 7 AR2(inet) AR1(inet) GIST Data, RESERVE
672 148.872871 1 MN(ar3) AR3(ar3) GIST Data, RESERVE
673 148.872879 5 MN(ar3) AR3(ar3) GIST Data, RESERVE

A.1.12 Handover Back Home

674 149.313293 1 MN(home) HA(home:1) MIPv6 Binding Update
675 149.313299 5 MN(home) HA(home:1) MIPv6 Binding Update
676 149.545296 5 HA(home:1) MN(home) MIPv6 Binding Acknowledgement
677 149.545301 1 HA(home:1) MN(home) MIPv6 Binding Acknowledgement
678 149.546457 1 MN(home) CN(ar1) MIPv6 Binding Update
679 149.546463 5 MN(home) CN(ar1) MIPv6 Binding Update
680 149.546663 4 MN(home) CN(ar1) MIPv6 Binding Update
681 149.546670 7 MN(home) CN(ar1) MIPv6 Binding Update
682 149.547009 8 MN(home) CN(ar1) MIPv6 Binding Update
683 149.547015 10 MN(home) CN(ar1) MIPv6 Binding Update
684 149.547683 10 CN(ar1) MN(home) MIPv6 Binding Acknowledgement
685 149.547688 8 CN(ar1) MN(home) MIPv6 Binding Acknowledgement
686 149.547857 7 CN(ar1) MN(home) MIPv6 Binding Acknowledgement
687 149.547861 4 CN(ar1) MN(home) MIPv6 Binding Acknowledgement
688 149.548143 5 CN(ar1) MN(home) MIPv6 Binding Acknowledgement
689 149.548148 1 CN(ar1) MN(home) MIPv6 Binding Acknowledgement

690 149.550009 1 MN(home) CN(ar1) GIST Query
Message routing information object

Object Header
MRI type: 0
Flags: 0x00
IP version: 6
Flags: 0x800 (P)

A.1. MN Sender in Sender-Initiated Mode 63

Source address: MN(home)
Destination address: CN(ar1)
Source address prefix: 128
Destination address prefix: 0
Protocol: UDP (0x11)

691 149.550014 5 MN(home) CN(ar1) GIST Query
692 149.551529 5 HA(home:2) MN(home) GIST Response
693 149.551534 1 HA(home:2) MN(home) GIST Response
694 149.556064 1 MN(home) HA(home:2) GIST Confirm
695 149.556068 5 MN(home) HA(home:2) GIST Confirm
696 149.562307 1 MN(home) HA(home:2) GIST Data, RESERVE
697 149.562315 5 MN(home) HA(home:2) GIST Data, RESERVE
698 149.565408 4 HA(inet) CN(ar1) GIST Query
699 149.565417 7 HA(inet) CN(ar1) GIST Query
700 149.566814 7 AR1(inet) HA(inet) GIST Response
701 149.566819 4 AR1(inet) HA(inet) GIST Response
702 149.568494 4 HA(inet) AR1(inet) GIST Confirm
703 149.568501 7 HA(inet) AR1(inet) GIST Confirm
704 149.569613 4 HA(inet) AR1(inet) GIST Data, RESERVE
705 149.569618 7 HA(inet) AR1(inet) GIST Data, RESERVE
706 149.571072 7 AR1(inet) AR2(inet) GIST Data, NOTIFY*
707 149.571080 13 AR1(inet) AR2(inet) GIST Data, NOTIFY*
708 149.571881 8 AR1(ar1) CN(ar1) GIST Query
709 149.571887 10 AR1(ar1) CN(ar1) GIST Query
710 149.573437 15 AR2(inet2) AR3(inet2) GIST Data, NOTIFY*
711 149.573444 16 AR2(inet2) AR3(inet2) GIST Data, NOTIFY*
712 149.575027 17 AR3(ar3) MN(ar3) GIST Data, NOTIFY*
713 149.576143 10 CN(ar1) AR1(ar1) GIST Response
714 149.576148 8 CN(ar1) AR1(ar1) GIST Response
715 149.577004 8 AR1(ar1) CN(ar1) GIST Confirm
716 149.577009 10 AR1(ar1) CN(ar1) GIST Confirm
717 149.577496 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
718 149.577501 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
719 149.579884 10 CN(ar1) AR1(ar1) GIST Data, RESPONSE
720 149.579888 8 CN(ar1) AR1(ar1) GIST Data, RESPONSE
721 149.581025 7 AR1(inet) HA(inet) GIST Data, RESPONSE
722 149.581030 4 AR1(inet) HA(inet) GIST Data, RESPONSE
723 149.582750 5 HA(home:2) MN(home) GIST Data, RESPONSE
724 149.582755 1 HA(home:2) MN(home) GIST Data, RESPONSE

A.1.13 At Home: Hop-to-Hop Refreshes for old and new
path

725 150.431674 13 AR2(inet) AR1(inet) GIST Data, RESERVE*
726 150.431683 7 AR2(inet) AR1(inet) GIST Data, RESERVE*
727 150.518274 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
728 150.518288 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
729 150.926856 8 AR1(ar1) CN(ar1) GIST Query
730 150.926866 10 AR1(ar1) CN(ar1) GIST Query
731 150.927714 10 CN(ar1) AR1(ar1) GIST Response
732 150.927720 8 CN(ar1) AR1(ar1) GIST Response
733 150.928554 8 AR1(ar1) CN(ar1) GIST Confirm
734 150.928559 10 AR1(ar1) CN(ar1) GIST Confirm
735 151.397536 13 AR2(inet) CN(ar1) GIST Query*
736 151.397548 7 AR2(inet) CN(ar1) GIST Query*
737 151.398517 7 AR1(inet) AR2(inet) GIST Response*
738 151.398522 13 AR1(inet) AR2(inet) GIST Response*
739 151.399105 13 AR2(inet) AR1(inet) GIST Confirm*

64 A. Evaluation Packet Dumps

740 151.399109 7 AR2(inet) AR1(inet) GIST Confirm*
741 152.935746 4 HA(inet) AR1(inet) GIST Data, RESERVE
742 152.935755 7 HA(inet) AR1(inet) GIST Data, RESERVE
743 153.197688 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE*
744 153.197700 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE*
745 153.873761 1 MN(home) HA(home:2) GIST Data, RESERVE
746 153.873770 5 MN(home) HA(home:2) GIST Data, RESERVE
747 154.520418 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
748 154.520426 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
749 156.432765 13 AR2(inet) AR1(inet) GIST Data, RESERVE*
750 156.432777 7 AR2(inet) AR1(inet) GIST Data, RESERVE*
751 156.874249 1 MN(home) HA(home:2) GIST Data, RESERVE
752 156.874266 5 MN(home) HA(home:2) GIST Data, RESERVE
753 157.609204 16 AR3(inet2) CN(ar1) GIST Query*
754 157.609213 15 AR3(inet2) CN(ar1) GIST Query*
755 157.611185 15 AR2(inet2) AR3(inet2) GIST Response*
756 157.611191 16 AR2(inet2) AR3(inet2) GIST Response*
757 157.612519 16 AR3(inet2) AR2(inet2) GIST Confirm*
758 157.612523 15 AR3(inet2) AR2(inet2) GIST Confirm*
759 157.937328 4 HA(inet) AR1(inet) GIST Data, RESERVE
760 157.937339 7 HA(inet) AR1(inet) GIST Data, RESERVE
761 158.198625 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE*
762 158.198633 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE*
763 158.480745 4 HA(inet) CN(ar1) GIST Query
764 158.480755 7 HA(inet) CN(ar1) GIST Query
765 158.481836 7 AR1(inet) HA(inet) GIST Response
766 158.481841 4 AR1(inet) HA(inet) GIST Response
767 158.483784 4 HA(inet) AR1(inet) GIST Confirm
768 158.483790 7 HA(inet) AR1(inet) GIST Confirm
769 158.993960 8 AR1(ar1) CN(ar1) GIST Query
770 158.993965 10 AR1(ar1) CN(ar1) GIST Query
771 158.994809 10 CN(ar1) AR1(ar1) GIST Response
772 158.994815 8 CN(ar1) AR1(ar1) GIST Response
773 158.995529 8 AR1(ar1) CN(ar1) GIST Confirm
774 158.995534 10 AR1(ar1) CN(ar1) GIST Confirm
775 159.937120 4 HA(inet) AR1(inet) GIST Data, RESERVE
776 159.937128 7 HA(inet) AR1(inet) GIST Data, RESERVE
777 160.433218 13 AR2(inet) AR1(inet) GIST Data, RESERVE
778 160.433227 7 AR2(inet) AR1(inet) GIST Data, RESERVE
779 160.505155 8 AR1(ar1) CN(ar1) GIST Query
780 160.505164 10 AR1(ar1) CN(ar1) GIST Query
781 160.506073 10 CN(ar1) AR1(ar1) GIST Response
782 160.506078 8 CN(ar1) AR1(ar1) GIST Response
783 160.506789 8 AR1(ar1) CN(ar1) GIST Confirm
784 160.506795 10 AR1(ar1) CN(ar1) GIST Confirm
785 160.876551 1 MN(home) HA(home:2) GIST Data, RESERVE
786 160.876556 5 MN(home) HA(home:2) GIST Data, RESERVE
787 161.519684 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
788 161.519690 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
789 163.875027 1 MN(home) HA(home:2) GIST Data, RESERVE
790 163.875035 5 MN(home) HA(home:2) GIST Data, RESERVE

A.1.14 At Home: Old Path Teardown

791 164.036339 16 AR3(inet2) AR2(inet2) GIST Data, RESERVE(TEAR)*
792 164.036347 15 AR3(inet2) AR2(inet2) GIST Data, RESERVE(TEAR)*
793 164.037754 13 AR2(inet) AR1(inet) GIST Data, RESERVE(TEAR)*
794 164.037762 7 AR2(inet) AR1(inet) GIST Data, RESERVE(TEAR)*

A.2. CN Sender in Sender-Initiated Mode 65

A.1.15 At Home: Hop-To-Hop Refreshes

795 165.937370 4 HA(inet) AR1(inet) GIST Data, RESERVE
796 165.937379 7 HA(inet) AR1(inet) GIST Data, RESERVE
797 166.521201 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
798 166.521207 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
799 166.875146 1 MN(home) HA(home:2) GIST Data, RESERVE
800 166.875154 5 MN(home) HA(home:2) GIST Data, RESERVE
801 168.875961 1 MN(home) HA(home:2) GIST Data, RESERVE
802 168.875970 5 MN(home) HA(home:2) GIST Data, RESERVE
803 168.917834 1 MN(home) CN(ar1) GIST Query
804 168.917839 5 MN(home) CN(ar1) GIST Query
805 168.918854 5 HA(home:2) MN(home) GIST Response
806 168.918858 1 HA(home:2) MN(home) GIST Response
807 168.920841 1 MN(home) HA(home:2) GIST Confirm
808 168.920847 5 MN(home) HA(home:2) GIST Confirm
809 170.279245 4 HA(inet) CN(ar1) GIST Query
810 170.279256 7 HA(inet) CN(ar1) GIST Query
811 170.280285 7 AR1(inet) HA(inet) GIST Response
812 170.280311 4 AR1(inet) HA(inet) GIST Response
813 170.281300 4 HA(inet) AR1(inet) GIST Confirm
814 170.281305 7 HA(inet) AR1(inet) GIST Confirm
815 170.521784 8 AR1(ar1) CN(ar1) GIST Data, RESERVE
816 170.521789 10 AR1(ar1) CN(ar1) GIST Data, RESERVE
817 170.903694 8 AR1(ar1) CN(ar1) GIST Query
818 170.903704 10 AR1(ar1) CN(ar1) GIST Query
819 170.904371 10 CN(ar1) AR1(ar1) GIST Response
820 170.904377 8 CN(ar1) AR1(ar1) GIST Response
821 170.905391 8 AR1(ar1) CN(ar1) GIST Confirm
822 170.905397 10 AR1(ar1) CN(ar1) GIST Confirm
823 170.939856 4 HA(inet) AR1(inet) GIST Data, RESERVE
824 170.939866 7 HA(inet) AR1(inet) GIST Data, RESERVE
825 171.875745 1 MN(home) HA(home:2) GIST Data, RESERVE
826 171.875756 5 MN(home) HA(home:2) GIST Data, RESERVE

A.2 CN Sender in Sender-Initiated Mode

No. Time VLAN Source Destination Protocol Info
1 0.000000 1 MN(ar1) HA(home:1) MIPv6 Binding Update
2 0.000006 8 MN(ar1) HA(home:1) MIPv6 Binding Update
3 0.000240 7 MN(ar1) HA(home:1) MIPv6 Binding Update
4 0.000246 4 MN(ar1) HA(home:1) MIPv6 Binding Update
5 0.007467 4 HA(home:1) MN(ar1) MIPv6 Binding Acknowledgement
6 0.007476 7 HA(home:1) MN(ar1) MIPv6 Binding Acknowledgement
7 0.008985 1 MN(ar1) CN(ar1) MIPv6 Care-of Test Init
8 0.008990 10 MN(ar1) CN(ar1) MIPv6 Care-of Test Init
9 0.009368 10 CN(ar1) MN(ar1) MIPv6 Care-of Test
10 0.009372 1 CN(ar1) MN(ar1) MIPv6 Care-of Test
11 0.009928 1 MN(ar1) CN(ar1) MIPv6 Binding Update
12 0.009932 10 MN(ar1) CN(ar1) MIPv6 Binding Update
13 0.011996 8 HA(home:1) MN(ar1) MIPv6 Binding Acknowledgement
14 0.012001 1 HA(home:1) MN(ar1) MIPv6 Binding Acknowledgement
15 0.013069 10 CN(ar1) MN(ar1) MIPv6 Binding Acknowledgement
16 0.013073 1 CN(ar1) MN(ar1) MIPv6 Binding Acknowledgement
17 0.014397 10 CN(ar1) MN(ar1) GIST Query

Message routing information object
Object Header
MRI type: 0

66 A. Evaluation Packet Dumps

Flags: 0x00
IP version: 6
Flags: 0x800 (P)
Source address: CN(ar1)
Destination address: MN(ar1)
Source address prefix: 0
Destination address prefix: 128
Protocol: UDP (0x11)

18 0.014402 1 CN(ar1) MN(ar1) GIST Query
19 0.015725 1 MN(ar1) CN(ar1) GIST Response
20 0.015730 10 MN(ar1) CN(ar1) GIST Response
21 0.016280 10 CN(ar1) MN(ar1) GIST Confirm
22 0.016284 1 CN(ar1) MN(ar1) GIST Confirm
23 0.016774 10 CN(ar1) MN(ar1) GIST Data, RESERVE
24 0.016778 1 CN(ar1) MN(ar1) GIST Data, RESERVE
25 0.020173 1 MN(ar1) CN(ar1) GIST Data, RESPONSE
26 0.020178 10 MN(ar1) CN(ar1) GIST Data, RESPONSE
27 0.022317 10 CN(ar1) AR1(ar1) GIST Data, RESERVE(TEAR)*

Message routing information object
Object Header
MRI type: 0
Flags: 0x00
IP version: 6
Flags: 0x800 (P)
Source address: CN(ar1)
Destination address: MN(ar3)
Source address prefix: 0
Destination address prefix: 128
Protocol: UDP (0x11)

28 0.022321 8 CN(ar1) AR1(ar1) GIST Data, RESERVE(TEAR)*
29 0.023921 7 AR1(inet) AR2(inet) GIST Data, RESERVE(TEAR)*
30 0.023927 13 AR1(inet) AR2(inet) GIST Data, RESERVE(TEAR)*
31 0.025681 15 AR2(inet2) AR3(inet2) GIST Data, RESERVE(TEAR)*
32 0.025687 16 AR2(inet2) AR3(inet2) GIST Data, RESERVE(TEAR)*

B. Setup and Tear Down Delay
Benchmarks

The following are our raw benchmark numbers which are discussed in Chapter
5.3. First the raw numbers are given, including numbers we excluded as obvi-
ous outliers—marked as such. After the raw numbers we provide a histogram of
the numbers including average and median, as well as the 95% confidence interval
around the average.

B.1 Benchmarks Without Addition Delay

B.1.1 MN Sender, Sender-Initiated, No Delay

Setup Delay while at AR1:

0.012521, 0.009143, 0.010928, 0.013858, 0.012173, 0.012331, 0.015062, 0.010738,
0.011922, 0.017683, 0.010704, 0.013266, 0.009454, 0.012740, 0.007646, 0.008531,
0.013782, 0.012146, 0.008302, 0.014122, 0.012801, 0.013521, 0.013790, 0.010516,
0.011789, 0.013931, 0.011730, 0.014942, 0.013180, 0.007619, 0.009976, 0.011400,
0.010292, 0.015530, 0.008344, 0.013945, 0.017290, 0.011503, 0.007794, 0.009785,
0.017947, 0.009425, 0.012117, 0.011475, 0.008066, 0.008284, 0.009512, 0.008195,
0.018135, 0.008672

Setup Delay while at AR2:

0.025336, 0.026539, 0.030141, 0.031318, 0.032964, 0.021357, 0.028135, 0.022956,
0.030324, 0.022137, 0.023677, 0.027229, 0.023376, 0.024132, 0.028300, 0.029050,
0.019873, 0.025698, 0.021219, 0.024512, 0.029313, 0.039701, 0.022520, 0.039862,
0.027717, 0.028368, 0.026117, 0.021549, 0.024430, 0.030177, 0.024320, 0.021799,
0.030035, 0.020860, 0.027445, 0.041659, 0.032121, 0.028745, 0.032162, 0.025273,
0.032387, 0.024038, 0.027651, 0.028118, 0.025764, 0.020314, 0.023885, 0.032253,
0.023943, 0.029257

68 B. Setup and Tear Down Delay Benchmarks

Setup Delay while at AR3:

0.038579, 0.036650, 0.039657, 0.034525, 0.037392, 0.030402, 0.037518, 0.039047,
0.041655, 0.031069, 0.034970, 0.035416, 0.044039, 0.038308, 0.044912, 0.032244,
0.031085, 0.039961, 0.041250, 0.031753, 0.047994, 0.045269, 0.048476, 0.032436,
0.032346, 0.032701, 0.034016, 0.045418, 0.043951, 0.037546, 0.035939, 0.028038,
0.030356, 0.029002, 0.044163, 0.041439, 0.044517, 0.037571, 0.031181, 0.028760,
0.040765, 0.035363, 0.046820, 0.032099, 0.041736, 0.044093, 0.031336, 0.049597,
0.035668
Outliers: 0.076472

Tear Down Delay (AR2, AR3):

26.742899, 23.710220, 23.548284, 20.978137, 14.682111, 14.549829, 20.704293,
19.959679, 14.345056, 22.779567, 18.524552, 14.563954, 9.959447, 28.542556,
13.331614, 16.345001, 20.918251, 28.621168, 20.613619, 20.266983, 16.554355,
15.371855, 23.479298, 18.019118, 26.489390, 21.158070, 12.501308, 22.567096,
13.852113, 10.925003, 21.516176, 25.155244, 19.973963
Outliers: 8.058581, 8.341470

B.1. Benchmarks Without Addition Delay 69

10 15
Average 11.7712ms Median 11.7595 ms N=50

Figure B.1: Setup Delay on AR1

20 25 30 35 40
Average 27.2011ms Median 26.884 ms N=50

Figure B.2: Setup Delay on AR2

30 35 40 45
Average 37.7353ms Median 37.546 ms N=49

Figure B.3: Setup Delay on AR3

10 15 20 25
Average 19.4318s Median 20.6136 s N=33

Figure B.4: Tear Down Delay

70 B. Setup and Tear Down Delay Benchmarks

B.1.2 CN Sender, Sender-Initiated, No Delay

Setup Delay while at AR1:

0.013853, 0.013677, 0.008620, 0.018207, 0.014526, 0.013480, 0.011170, 0.018370,
0.011591, 0.012736, 0.011014, 0.016108, 0.012986, 0.011952, 0.017079, 0.014406,
0.013915, 0.014064, 0.016561, 0.015510, 0.013561, 0.008973, 0.013743, 0.010331,
0.012718, 0.012584, 0.016503, 0.010726, 0.009696, 0.014255, 0.010222, 0.009381,
0.011402, 0.017715, 0.011404, 0.014891, 0.013077, 0.019733, 0.008017, 0.009934,
0.009822, 0.012948, 0.017281, 0.013277, 0.010652, 0.013364, 0.013417, 0.010499,
0.016301, 0.014927

Setup Delay while at AR2:

0.027436, 0.024706, 0.022963, 0.024295, 0.027411, 0.029320, 0.025256, 0.029543,
0.026114, 0.030737, 0.030648, 0.026370, 0.026736, 0.022031, 0.024890, 0.026803,
0.043281, 0.031497, 0.024593, 0.032592, 0.024908, 0.029950, 0.023932, 0.026164,
0.032924, 0.026957, 0.030544, 0.030144, 0.042098, 0.028132, 0.021989, 0.030204,
0.030728, 0.026715, 0.029466, 0.027129, 0.027927, 0.025110, 0.020873, 0.036279,
0.024636, 0.031318, 0.022925, 0.027564, 0.028313, 0.023412, 0.032547, 0.026641,
0.024771
Outliers: 0.050248

Setup Delay while at AR3:

0.045429, 0.033002, 0.040301, 0.043696, 0.038313, 0.054775, 0.047530, 0.040652,
0.047775, 0.037338, 0.035374, 0.035397, 0.050548, 0.045884, 0.034726, 0.036977,
0.039434, 0.037811, 0.050202, 0.041492, 0.034667, 0.034128, 0.045941, 0.037122,
0.044108, 0.037110, 0.043798, 0.050324, 0.045102, 0.039150, 0.033119, 0.038543,
0.036980, 0.036103, 0.038706, 0.060334, 0.036440, 0.045945, 0.038366, 0.031133,
0.049726, 0.044151, 0.033910, 0.037396, 0.044054, 0.044486, 0.047568, 0.035084,
0.048270
Outliers: 0.137320

Tear Down Delay (AR2, AR3):

0.025797, 0.024459, 0.022863, 0.023722, 0.024853, 0.028117, 0.025109, 0.028199,
0.023646, 0.029961, 0.028349, 0.026780, 0.026984, 0.019619, 0.023016, 0.026968,
0.039827, 0.031904, 0.023267, 0.032040, 0.024094, 0.029495, 0.023620, 0.026103,
0.032388, 0.027057, 0.028090, 0.029673, 0.039514, 0.025409, 0.021595, 0.028975,
0.027693, 0.024802, 0.029138, 0.023688, 0.027794, 0.024176, 0.019784, 0.034716,
0.022574, 0.028327, 0.022687, 0.024761, 0.027833, 0.023617, 0.029052, 0.026066,
0.023980
Outliers: 0.048519

B.1. Benchmarks Without Addition Delay 71

10 15
Average 13.2236ms Median 13.3205 ms N=50

Figure B.5: Setup Delay on AR1

20 25 30 35 40
Average 27.9902ms Median 27.411 ms N=49

Figure B.6: Setup Delay on AR2

30 35 40 45 50 55 60
Average 41.3963ms Median 40.301 ms N=49

Figure B.7: Setup Delay on AR3

20 25 30 35
Average 26.7792ms Median 26.78 ms N=49

Figure B.8: Tear Down Delay

72 B. Setup and Tear Down Delay Benchmarks

B.1.3 MN Sender, Reciever-Initiated, No Delay

Setup Delay while at AR1:

0.009549, 0.013223, 0.013150, 0.016289, 0.011553, 0.011085, 0.017727, 0.009088,
0.017577, 0.016956, 0.008835, 0.007393, 0.013013, 0.013031, 0.014285, 0.009041,
0.014385, 0.009794, 0.009203, 0.010453, 0.011043, 0.008841, 0.011008, 0.014319,
0.014357, 0.016801, 0.010070, 0.009354, 0.013038, 0.012135, 0.010948, 0.009626,
0.010224, 0.013657, 0.012124, 0.009211, 0.011103, 0.012148, 0.013222, 0.009515,
0.013026, 0.012334, 0.010464, 0.014167, 0.018161, 0.008273, 0.010073, 0.010098

Setup Delay while at AR2:

0.023616, 0.026303, 0.030743, 0.028876, 0.029239, 0.033295, 0.026816, 0.027549,
0.038333, 0.027046, 0.027339, 0.029271, 0.028983, 0.026786, 0.028789, 0.032618,
0.034650, 0.028434, 0.030747, 0.025382, 0.028822, 0.028896, 0.032336, 0.032947,
0.026064, 0.026344, 0.037159, 0.026355, 0.039783, 0.030619, 0.026919, 0.028398,
0.028936, 0.036387, 0.025703, 0.042426, 0.029747, 0.028705, 0.030151, 0.034197,
0.037016, 0.039741, 0.027395, 0.037813, 0.030815, 0.036808, 0.028559, 0.028070

Setup Delay while at AR3:

0.047586, 0.042326, 0.039712, 0.040412, 0.038627, 0.049030, 0.076126, 0.052299,
0.037177, 0.044387, 0.040145, 0.047906, 0.039705, 0.036267, 0.036380, 0.046564,
0.039302, 0.041355, 0.040041, 0.052149, 0.034855, 0.050681, 0.041220, 0.046398,
0.043192, 0.044084, 0.036491, 0.043129, 0.037386, 0.045907, 0.041980, 0.046706,
0.041291, 0.055113, 0.042117, 0.043042, 0.047064, 0.045692, 0.038936, 0.045215,
0.063507, 0.035519, 0.039352, 0.044536, 0.039163, 0.051235, 0.052225

Tear Down Delay (AR2, AR3):

0.022983, 0.025580, 0.030420, 0.026824, 0.027970, 0.033298, 0.026484, 0.027166,
0.035942, 0.026116, 0.027126, 0.026535, 0.027986, 0.026269, 0.028043, 0.032122,
0.027003, 0.027674, 0.030485, 0.024962, 0.028490, 0.028078, 0.032100, 0.033016,
0.023047, 0.026350, 0.035900, 0.025987, 0.037160, 0.029716, 0.026517, 0.027396,
0.027347, 0.035347, 0.025599, 0.041065, 0.029011, 0.026391, 0.029411, 0.034230,
0.036853, 0.033686, 0.027822, 0.031134, 0.030301, 0.036525, 0.028194, 0.027517

B.1. Benchmarks Without Addition Delay 73

10 15
Average 11.9785ms Median 11.328 ms N=48

Figure B.9: Setup Delay on AR1

25 30 35 40

Average 30.6651ms Median 28.9595 ms N=48

Figure B.10: Setup Delay on AR2

35 40 45 50 55 60 65 70 75

Average 44.3305ms Median 43.129 ms N=47

Figure B.11: Setup Delay on AR3

25 30 35 40

Average 29.4829ms Median 28.0145 ms N=48

Figure B.12: Tear Down Delay

74 B. Setup and Tear Down Delay Benchmarks

B.1.4 CN Sender, Reciever-Initiated, No Delay

Setup Delay while at AR1:

0.010294, 0.017332, 0.012004, 0.012379, 0.013701, 0.014845, 0.010394, 0.013158,
0.011129, 0.015902, 0.016299, 0.010298, 0.020515, 0.009975, 0.011348, 0.010209,
0.010694, 0.014203, 0.019553, 0.015132, 0.019320, 0.021090, 0.014132, 0.009980,
0.017118, 0.013048, 0.014840, 0.009378, 0.014087, 0.011098, 0.023312, 0.011660,
0.010581, 0.010888, 0.012914, 0.009750, 0.012491, 0.011651, 0.015257, 0.010296,
0.013901, 0.009644, 0.010009, 0.011484, 0.009504, 0.009691, 0.015895, 0.008953,
0.014638
Outliers: 0.032293

Setup Delay while at AR2:

0.028894, 0.030356, 0.036248, 0.029475, 0.028105, 0.035612, 0.038178, 0.030577,
0.027729, 0.039643, 0.036938, 0.035944, 0.034448, 0.039552, 0.034640, 0.028093,
0.029647, 0.042444, 0.029197, 0.031488, 0.034024, 0.036046, 0.034787, 0.035417,
0.038291, 0.045247, 0.032693, 0.026415, 0.034683, 0.031466, 0.030707, 0.031561,
0.026901, 0.031366, 0.033734, 0.038634, 0.039605, 0.034822, 0.028109, 0.034923,
0.030162, 0.034663, 0.040779, 0.032853, 0.033013, 0.027059, 0.033433, 0.031692,
0.033372, 0.031311

Setup Delay while at AR3:

0.036377, 0.040400, 0.053457, 0.042108, 0.048257, 0.053646, 0.035054, 0.045853,
0.046708, 0.040201, 0.052751, 0.040009, 0.053269, 0.038874, 0.040076, 0.043744,
0.044630, 0.041820, 0.045384, 0.047805, 0.047128, 0.046598, 0.053503, 0.041560,
0.034691, 0.040699, 0.042717, 0.052997, 0.038704, 0.045936, 0.042190, 0.045847,
0.042866, 0.038558, 0.060388, 0.037588, 0.045020, 0.035347, 0.040896, 0.042290,
0.036778, 0.036154, 0.038887, 0.036966, 0.039646, 0.038751, 0.043647, 0.043252,
0.040570, 0.044692

Tear Down Delay (AR2, AR3):

0.028168, 0.029236, 0.035671, 0.028859, 0.027562, 0.032719, 0.037051, 0.029745,
0.027107, 0.039050, 0.036411, 0.035347, 0.033818, 0.037953, 0.034133, 0.027431,
0.027673, 0.035568, 0.028642, 0.030835, 0.031980, 0.035395, 0.034209, 0.031734,
0.037297, 0.044037, 0.030103, 0.025817, 0.034132, 0.030715, 0.030133, 0.030714,
0.026290, 0.028405, 0.033198, 0.037497, 0.036863, 0.034151, 0.027458, 0.032125,
0.029412, 0.033837, 0.038389, 0.031897, 0.032439, 0.026543, 0.029233, 0.028558,
0.032727, 0.028507

B.1. Benchmarks Without Addition Delay 75

10 15 20
Average 13.1831ms Median 12.491 ms N=49

Figure B.13: Setup Delay on AR1

30 35 40 45
Average 33.4995ms Median 33.4025 ms N=50

Figure B.14: Setup Delay on AR2

35 40 45 50 55 60
Average 43.3058ms Median 42.24 ms N=50

Figure B.15: Setup Delay on AR3

25 30 35 40
Average 32.1355ms Median 31.9385 ms N=50

Figure B.16: Tear Down Delay

76 B. Setup and Tear Down Delay Benchmarks

B.2 Benchmarks With Additional Delay

B.2.1 MN Sender, Sender-Initiated, Delay

Setup Delay while at AR2:

0.227109, 0.228970, 0.229176, 0.230684, 0.227169, 0.233016, 0.232014, 0.225110,
0.227048, 0.231123, 0.233058, 0.227128, 0.227032, 0.228901, 0.231209, 0.227045,
0.231339, 0.227057, 0.231372, 0.227530, 0.226342, 0.227523, 0.228799, 0.227204,
0.227137, 0.231422, 0.228859, 0.226850, 0.228803, 0.223095, 0.227326, 0.228892,
0.227033, 0.229184, 0.231073, 0.228901, 0.235086, 0.226986, 0.224854, 0.227169,
0.232974, 0.224686, 0.238022, 0.231175, 0.225025, 0.224886, 0.239260, 0.231921,
0.229069, 0.233123

Setup Delay while at AR3:

0.354903, 0.348908, 0.347158, 0.354969, 0.356937, 0.352916, 0.349000, 0.355027,
0.353245, 0.345081, 0.341408, 0.347381, 0.351049, 0.347104, 0.351357, 0.349070,
0.346979, 0.350951, 0.344929, 0.344854, 0.349045, 0.347098, 0.340886, 0.350885,
0.345224, 0.340693, 0.350991, 0.362780, 0.348834, 0.350975, 0.347104, 0.353748,
0.354985, 0.352808, 0.352992, 0.348738, 0.338586, 0.346952, 0.346665, 0.348980,
0.356901, 0.348830, 0.345316, 0.344806, 0.347159, 0.359581, 0.353376, 0.354706,
0.348879, 0.348808

Tear Down Delay (AR2, AR3):

18.077434, 10.981500, 15.229439, 18.497418, 16.017421, 24.217348, 15.661473,
23.869390, 9.113504, 14.299384, 18.099454, 20.315390, 10.089499, 20.245386,
21.061389, 16.813445, 20.819439, 16.639435, 21.425389, 20.633367, 17.319406,
17.119428, 12.413468, 20.835389, 15.327464, 15.421401, 23.591377, 19.909392,
20.721353, 14.505444, 20.051438, 15.619351, 16.223436, 19.135393, 20.463313,
11.563494, 22.599388, 21.175400, 19.157416, 21.549392

B.2. Benchmarks With Additional Delay 77

225 230 235

Average 229.115ms Median 228.831 ms N=50

Figure B.17: Setup Delay on AR2

340 345 350 355 360
Average 349.611ms Median 348.944 ms N=50

Figure B.18: Setup Delay on AR3

10 15 20
Average 17.9202s Median 18.2984 s N=40

Figure B.19: Tear Down Delay

78 B. Setup and Tear Down Delay Benchmarks

B.2.2 CN Sender, Sender-Initiated, Delay

Setup Delay while at AR2:

0.228935, 0.226959, 0.240700, 0.238705, 0.226865, 0.235197, 0.229188, 0.235180,
0.226930, 0.226932, 0.233919, 0.233290, 0.232141, 0.229185, 0.227797, 0.242559,
0.230094, 0.225547, 0.243204, 0.230976, 0.238990, 0.239350, 0.240899, 0.229240,
0.228934, 0.234934, 0.233117, 0.235199, 0.232851, 0.233292, 0.226893, 0.231509,
0.230985, 0.228839, 0.228957, 0.235316, 0.235581, 0.226572, 0.235169, 0.228936,
0.228948, 0.239168, 0.228806, 0.230957, 0.235006, 0.226952, 0.225103, 0.227369,
0.235374

Setup Delay while at AR3:

0.355301, 0.352793, 0.347252, 0.360981, 0.351001, 0.353129, 0.351033, 0.349043,
0.353398, 0.346947, 0.354858, 0.353350, 0.365269, 0.345449, 0.352941, 0.355098,
0.355415, 0.360988, 0.347401, 0.348931, 0.361216, 0.353218, 0.353402, 0.355341,
0.353363, 0.354963, 0.355092, 0.346947, 0.343359, 0.349222, 0.347322, 0.357119,
0.359203, 0.351193, 0.349234, 0.354930, 0.351208, 0.348799, 0.343186, 0.346925,
0.351322, 0.354898, 0.359240, 0.350910, 0.345007, 0.350803, 0.360752, 0.351332,
0.354991
Outliers: 0.405214

Tear Down Delay (AR2, AR3):

0.207084, 0.200987, 0.213051, 0.206789, 0.200819, 0.208900, 0.205340, 0.208897,
0.201118, 0.204651, 0.209765, 0.209259, 0.203286, 0.205878, 0.201621, 0.214976,
0.205011, 0.201177, 0.217029, 0.206861, 0.213185, 0.210943, 0.214768, 0.204986,
0.204917, 0.208979, 0.208913, 0.211246, 0.209120, 0.209204, 0.203100, 0.207413,
0.207254, 0.205346, 0.203155, 0.208962, 0.209210, 0.202667, 0.209221, 0.204748,
0.204706, 0.214957, 0.203140, 0.204952, 0.209418, 0.208892, 0.200864, 0.206038,
0.210903

B.2. Benchmarks With Additional Delay 79

225 230 235 240
Average 232.195ms Median 231.509 ms N=49

Figure B.20: Setup Delay on AR2

345 350 355 360 365
Average 352.553ms Median 353.129 ms N=49

Figure B.21: Setup Delay on AR3

205 210 215
Average 207.218ms Median 207.254 ms N=49

Figure B.22: Tear Down Delay

80 B. Setup and Tear Down Delay Benchmarks

B.2.3 MN Sender, Reciever-Initiated, Delay

Setup Delay while at AR2:

0.286941, 0.286878, 0.282888, 0.281112, 0.284984, 0.280975, 0.284814, 0.285123,
0.287027, 0.285001, 0.284907, 0.282913, 0.297155, 0.281210, 0.284942, 0.288806,
0.294870, 0.286899, 0.287692, 0.284833, 0.285151, 0.280844, 0.284679, 0.285775,
0.291069, 0.291001, 0.280979, 0.282919, 0.286767, 0.285051, 0.278786, 0.286917,
0.292995, 0.285129, 0.284984, 0.280280, 0.284853, 0.283090, 0.289139, 0.287142,
0.293234, 0.289040, 0.290710, 0.286998, 0.292891, 0.290077, 0.293217, 0.283160,
0.291086, 0.292996

Setup Delay while at AR3:

0.427275, 0.431290, 0.426709, 0.430330, 0.427939, 0.431060, 0.427211, 0.427381,
0.429008, 0.427156, 0.431020, 0.427112, 0.436938, 0.424787, 0.424925, 0.427124,
0.432764, 0.429037, 0.429143, 0.427048, 0.429237, 0.435469, 0.426982, 0.432958,
0.432344, 0.435277, 0.425293, 0.431107, 0.443606, 0.426963, 0.431014, 0.431217,
0.434848, 0.432877, 0.433169, 0.426883, 0.422907, 0.430817, 0.427024, 0.432816,
0.426969, 0.440866, 0.436932, 0.429317, 0.426731, 0.429014, 0.433285, 0.440856,
0.429474, 0.427163

Tear Down Delay (AR2, AR3):

0.260857, 0.262828, 0.259010, 0.256946, 0.261112, 0.256982, 0.256942, 0.258974,
0.263013, 0.262040, 0.257308, 0.259162, 0.272911, 0.257006, 0.259360, 0.264661,
0.272892, 0.260877, 0.262879, 0.260880, 0.260904, 0.254840, 0.260691, 0.258847,
0.263038, 0.266712, 0.255564, 0.256869, 0.263233, 0.261244, 0.252842, 0.263123,
0.262943, 0.258846, 0.260885, 0.256337, 0.259624, 0.258989, 0.265536, 0.260930,
0.267139, 0.263355, 0.265108, 0.263432, 0.268961, 0.266995, 0.267170, 0.259193,
0.267201, 0.267263

B.2. Benchmarks With Additional Delay 81

280 285 290 295

Average 286.619ms Median 285.463 ms N=50

Figure B.23: Setup Delay on AR2

425 430 435 440
Average 430.373ms Median 429.277 ms N=50

Figure B.24: Setup Delay on AR3

255 260 265 270
Average 261.689ms Median 260.917 ms N=50

Figure B.25: Tear Down Delay

82 B. Setup and Tear Down Delay Benchmarks

B.2.4 CN Sender, Reciever-Initiated, Delay

Setup Delay while at AR2:

0.283649, 0.287659, 0.290432, 0.291489, 0.291689, 0.287839, 0.293480, 0.283402,
0.286200, 0.285530, 0.288261, 0.280015, 0.277242, 0.287607, 0.279752, 0.281774,
0.285936, 0.293802, 0.287618, 0.283729, 0.290413, 0.290840, 0.289682, 0.289911,
0.277418, 0.285048, 0.281610, 0.294068, 0.291874, 0.289710, 0.292255, 0.289778,
0.291574, 0.287443, 0.286697, 0.296223, 0.286870, 0.284980, 0.287579, 0.284810,
0.288012, 0.286100, 0.307319, 0.283885, 0.293917, 0.292004, 0.290916
Outliers: 0.234333

Setup Delay while at AR3:

0.455971, 0.431154, 0.430961, 0.432962, 0.432868, 0.425191, 0.426969, 0.431052,
0.428985, 0.427021, 0.432798, 0.424695, 0.425137, 0.426732, 0.426762, 0.438949,
0.429039, 0.433031, 0.426861, 0.428770, 0.424714, 0.428686, 0.426704, 0.426928,
0.432882, 0.430957, 0.425897, 0.430984, 0.432737, 0.427225, 0.436611, 0.431071,
0.441224, 0.425203, 0.433031, 0.443344, 0.429286, 0.441595, 0.442352, 0.428998,
0.427226, 0.429197, 0.427206, 0.428192

Tear Down Delay (AR2, AR3):

0.309614, 0.313631, 0.317595, 0.317616, 0.317619, 0.313603, 0.319620, 0.309628,
0.309585, 0.311626, 0.311541, 0.305631, 0.303348, 0.313595, 0.305617, 0.307635,
0.311651, 0.319537, 0.313605, 0.309606, 0.313650, 0.317631, 0.315620, 0.315555,
0.303596, 0.311624, 0.307612, 0.319581, 0.317592, 0.315601, 0.315597, 0.315578,
0.317656, 0.313638, 0.313091, 0.323598, 0.313609

B.2. Benchmarks With Additional Delay 83

280 285 290 295 300 305

Average 288.043ms Median 287.839 ms N=47

Figure B.26: Setup Delay on AR2

425 430 435 440 445 450 455

Average 431.094ms Median 429.118 ms N=44

Figure B.27: Setup Delay on AR3

305 310 315 320
Average 313.317ms Median 313.631 ms N=37

Figure B.28: Tear Down Delay

84 B. Setup and Tear Down Delay Benchmarks

Bibliography

[1] USAGI Project - Linux IPv6 Development Project. Internet: http://www.linux-
ipv6.org/.

[2] Bless, Roland, Thomas Herzog, Markus Ott, Matthias Friedrich,
Max Laier and Martin Röhricht: NSIS Implementation Project: NSIS-ka.
Internet: https://projekte.tm.uka.de/trac/NSIS/, July 2005.

[3] Braden, R., L. Zhang, S. Berson, S. Herzog and S. Jamin: Resource
ReSerVation Protocol (RSVP) – Version 1 Functional Specification. RFC 2205
(Proposed Standard), September 1997. Updated by RFCs 2750, 3936, 4495.

[4] Dell’Uomo, L. and E. Scarrone: An all-IP solution for QoS mobility man-
agement and AAA in the 4G mobile networks. Wireless Personal Multimedia
Communications, 2002. The 5th International Symposium on, 2:591–595 vol.2,
Oct. 2002.

[5] Johnson, D., C. Perkins and J. Arkko: Mobility Support in IPv6. RFC
3775 (Proposed Standard), June 2004.

[6] Kan, Zhigang, Dongmei Zhang, Runtong Zhang and Jian Ma: QoS
in Mobile IPv6. In Info-tech and Info-net, 2001. Proceedings, volume 2, pages
492–497. Nokia China R&D Center, 2001.

[7] Keeni, G., K. Koide, K. Nagami and S. Gundavelli: Mobile IPv6 Man-
agement Information Base. RFC 4295 (Proposed Standard), April 2006.

[8] Manner, J., G. Karagiannis and A. McDonald: NSLP for Quality-
of-Service Signaling. Internet: http://tools.ietf.org/id/draft-ietf-nsis-qos-nslp,
February 2008. Revision 16.

[9] Marques, Victor, Rui L. Aguiar, Piotr Pacyna, Janusz Gozdecki,
Christophe Beaujean, Carlos Garcia, Jose Ignacio Moreno and
Hans Einsiedler: An Architecture Supporting End-to-End QoS with User
Mobility for Systems Beyond 3 rd Generation, 2002.

[10] Pashalidis, A. and H. Tschofenig: GIST NAT Traversal. Internet:
http://tools.ietf.org/id/draft-pashalidis-nsis-gimps-nattraversal, July 2007. Re-
vision 05.

[11] Recio, R., B. Metzler, P. Culley, J. Hilland and D. Garcia: A Re-
mote Direct Memory Access Protocol Specification. RFC 5040 (Proposed Stan-
dard), October 2007.

86 Bibliography

[12] Rizzo, Luigi: Dummynet: a simple approach to the evaluation of network
protocols. SIGCOMM Comput. Commun. Rev., 27(1):31–41, 1997.

[13] Sanda, T., X. Fu, J. Manner S. Jeong and H. Tschofenig:
Applicability Statement of NSIS Protocols in Mobile Environments. In-
ternet: http://tools.ietf.org/id/draft-ietf-nsis-applicability-mobility-signaling,
February 2008. Revision 09.

[14] Schulzrinne, H. and R. Hancock: GIST: General Internet Signalling
Transport. Internet: http://tools.ietf.org/id/draft-ietf-nsis-ntlp, February 2008.
Revision 15.

[15] Shen, C., H. Schulzrinne, S. Lee and J. Bang: NSIS Operation Over IP
Tunnels. Internet: http://tools.ietf.org/id/draft-ietf-nsis-tunnel, March 2008.
Revision 04.

[16] Shen, Charles Qi: Several Framework Issues Regarding NSIS and Mobility.
Internet: http://tools.ietf.org/id/draft-shen-nsis-mobility-fw, July 2002. Revi-
sion 00.

[17] Shen, Charles Qi, Winston Seah, Anthony Lo, Haihong Zheng and
Marc Greis: Mobility Extensions to RSVP in an RSVP-Mobile IPv6 Frame-
work. Internet: http://tools.ietf.org/id/draft-shen-nsis-rsvp-mobileipv6, July
2002. Revision 00.

[18] Steinleitner, N., X. Fu, D. Hogrefe, H. Tschofenig and T. Schreck:
An NSIS-based Approach for Firewall Traversal in Mobile IPv6 Networks, Oct
2007.

[19] Stiemerling, M., H. Tschofenig, C. Aoun and E. Davies: NAT/Firewall
NSIS Signaling Layer Protocol (NSLP). Internet: http://tools.ietf.org/id/draft-
ietf-nsis-nslp-natfw, February 2008. Revision 18.

