TELEMATICS TECHNICAL REPORTS

Proceedings of the 1st Inter-Domain Routing Workshop (**IDRWS 2003**) 18th of September Karlsruhe, Germany

Lichtwald, Götz

May, 26th 2004

TM-2004-2

ISSN 1613-849X

http://doc.tm.uka.de/tr/

Institute of Telematics, University of Karlsruhe TELEMATICS Zirkel 2, D-76128 Karlsruhe, Germany

Inter-Domain Routing Workshop 2003

Warum sind wir hier?

- Plattform f
 ür Diskussionen von Forscher, Betreiber und Hersteller
- Austausch von Ideen und Erfahrungen
- Praktische Aspekte
 - betriebliche Erfahrungen
 - Beobachtungen aus ISP Sicht
- Neuartige Konzepte und Untersuchungen
- Lösungsansätze oder Entwicklungen in Richtung
 - zukünftiger IDR-Verbesserungen
 - neuer Routing-Architekturen

Agenda

11:00 - 11:30	Welcome
11:30 - 12:00	Götz Lichtwald; Towards an Improvement of BGP Failure Handling
12:00 - 12:30	Uwe Walter; Explicit Routing Concepts
12:30 - 13:30	Mittagessen
13:30 - 14:00	Olaf Maennel; Observed properties of BGP convergence
14:00 - 14:30	Lx Manhenke; Routing-Konvergenz von RFC2547bis-VPNs
14:30 - 15:00	Kaffeepause
15:00 - 15:30	Thomas Schwabe; Policy based Calculation of the Internet Topology
15:30 - 16:00	Stefan Mink; <i>IGB - full mess</i> ^ <i>Hh</i>
16:00 – ca. 17:00	Besichtigung des Rechenzentrums von Schlund+Partner AG

Towards an Improvement of BGP Failure Handling

IDRWS 2003

Roland Bless, <u>Götz Lichtwald</u>, Markus Schmidt, Martina Zitterbart Institute of Telematics University of Karlsruhe Germany

Motivation

Motivation

Objectives

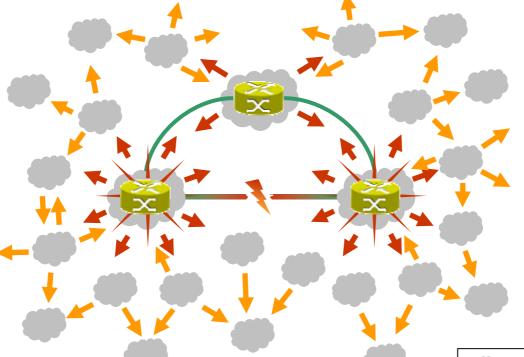
Other approaches

Example

Basic Concept

FSM

- How it works
- Pros and Cons


Evaluation

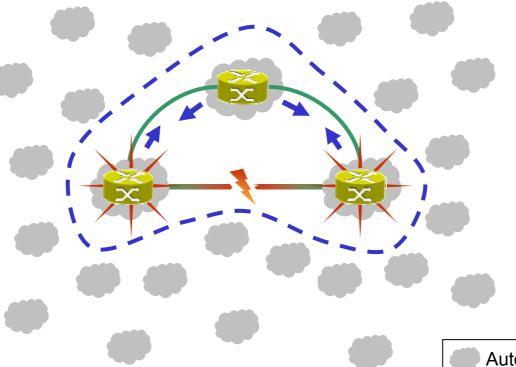
Conclusion

Outlook

BGP suffers from:

- Slow convergence (2min 10 min) → bad for VoIP
- Too many update messages → OS-Bugs, …
- Scope of update messages is not restricted
- Updates stress routers unnecessarily

Objectives


Objectives

Objectives

Motivation

- Other approaches
- Example
- **Basic Concept**
- FSM
- How it works
- Pros and Cons
- Evaluation
- Conclusion
- Outlook

- Providing fast inter-domain failure reaction (faster than BGP)
- Improving convergence time
- Limiting propagation scope of update messages
- Reduction of resource consumption

Other approaches

Motivation

Objectives

Other approaches

Example

Basic Concept

FSM

How it works

Pros and Cons

Evaluation

Conclusion

Outlook

- Approaches like
 - Route Flap Damping [RFC 2434]
 - Affects only flapping routes
 - Routes are suppressed although they are up again
 - \rightarrow considered to be bad
 - Graceful Restart [draft-ietf-idr-restart-06.txt]
 - Limits update storms on router restart

alleviate only a special symptom

Fast Scoped Rerouting

- Provides fast failure reaction
- Limits update storms
- Does not suppress good routes

Real AS Topology

Motivation

Objectives

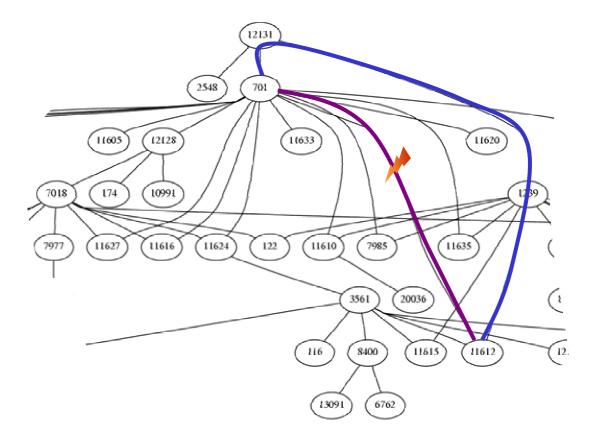
Other approaches

Example

Basic Concept

FSM

How it works


Pros and Cons

Evaluation

Conclusion

Outlook

Topology proves that often multiple bypasses are available

Source: http://www.routeviews.org/

Basic Concept

Motivation

Objectives

Other approaches

Example

Basic Concept

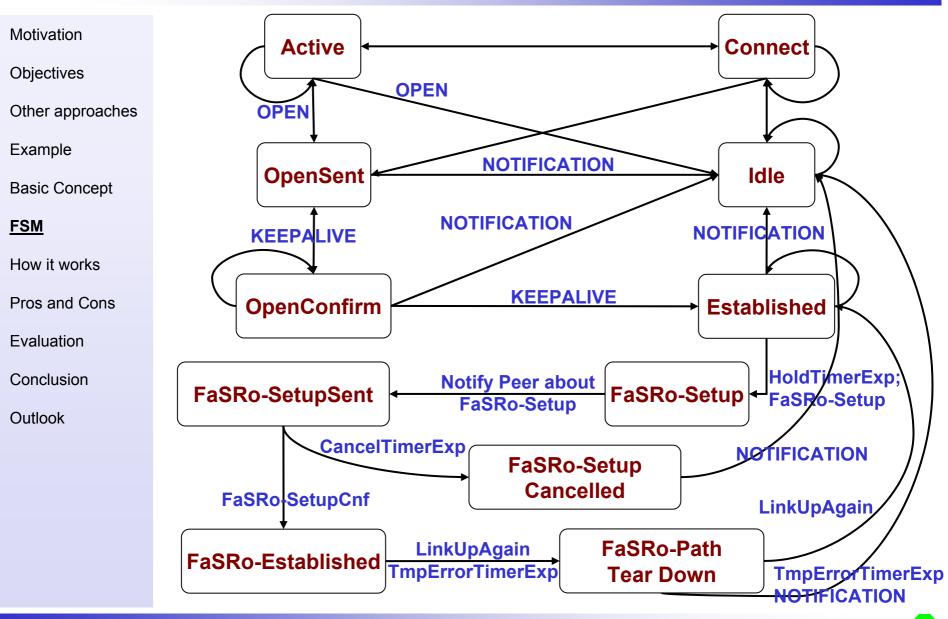
FSM

- How it works
- Pros and Cons

Evaluation

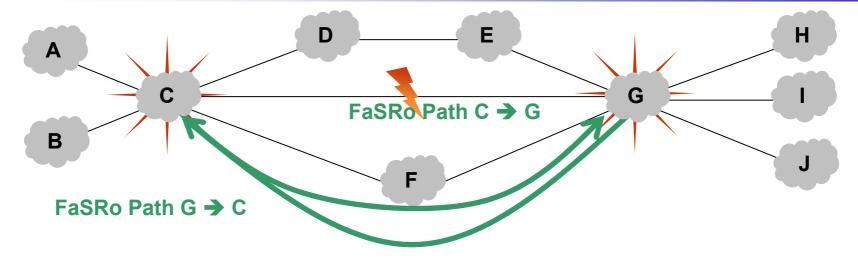
Conclusion

Outlook


- No link failure → BGP_{Fast Scoped Rerouting} ≈ BGP version 4
 - Link failure → Fast Scoped Rerouting (FaSRo) takes over
- Failure handling on two time scales:
 - Fine granular time scale (≤ 10 min) → FaSRo
 - Setting up the FaSRo-Path
 - Traffic redirected to FaSRo-Path
 - link recovers
 - Switch back to BGP
 - link failures seems persistent
 - Switch back to BGP and start BGP update process
 - Short time link failure → BGP is not affected
 - Failure duration exceeds a certain threshold
 - → BGP takes control for the failure reaction

Coarse granular time scale (> 10 min) -> BGP

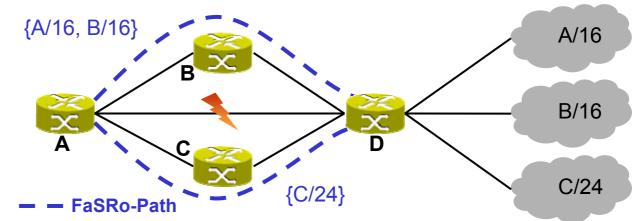
Extending the FSM of BGP



	A C B			F	-€	G		H
	Network	Next	Path	1		Network	Next	Path
		Hop					Нор	
*>	network (H)	G	GH		*	network (C)	F	FC
*		D	DEGH		*>		С	С
*		F	FGH		*		E	EDC
*	network (I)	D	DEGI					
*		F	FGI					
*>		G	GI]				
*>	network (J)	G	GJ]				
*		D	DEGJ					
*		F	FGJ					

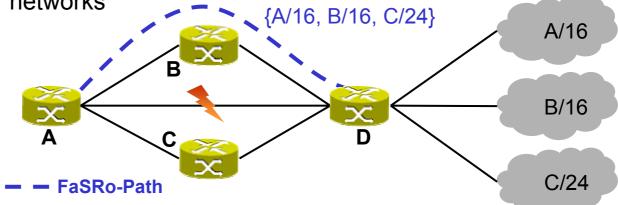
	Network	Next Hop	Path
*>	network (II)	G	GII
*		D	DEGH
*>		F	FGH
*	network (I)	D	DEGI
*>		F	FGI
*>		G	GI
*>	network (J)	G	- G- J
*		D	DEGJ
*		F	FGJ

	Network	Next	Path
		Нор	
*>	network (C)	F	FC
*>		С	C
*		E	ЕDС
	•••		



Motivation

FaSRo-Fan


- Objectives
- Other approaches
- Example
- **Basic Concept**
- FSM
- How it works
- Pros and Cons
- Evaluation
- Conclusion
- Outlook

Setting up a FaSRo-Path per destination network

Only ONE FaSRo-Path

Providing only one FaSRo-Path for all destination networks

Motivation

Objectives

- Other approaches
- Example
- **Basic Concept**
- FSM
- How it works

Pros and Cons

- Evaluation
- Conclusion
- Outlook

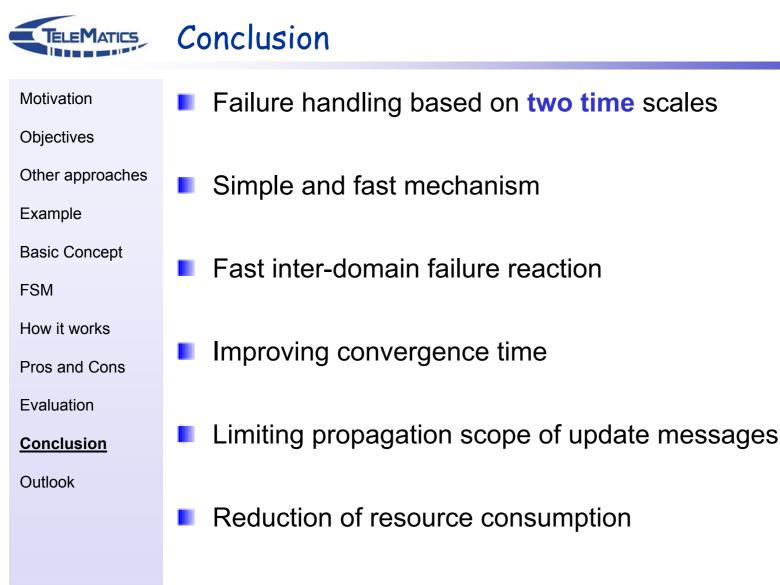
Fan-Variant

- Switching traffic to alternative path
 Simpler than BGP
- Signaling overhead (FaSRo-Path per destination network)
- Per destination network a FaSRo-Path has to be maintained
- 8 Not optimal routes for a short period of time

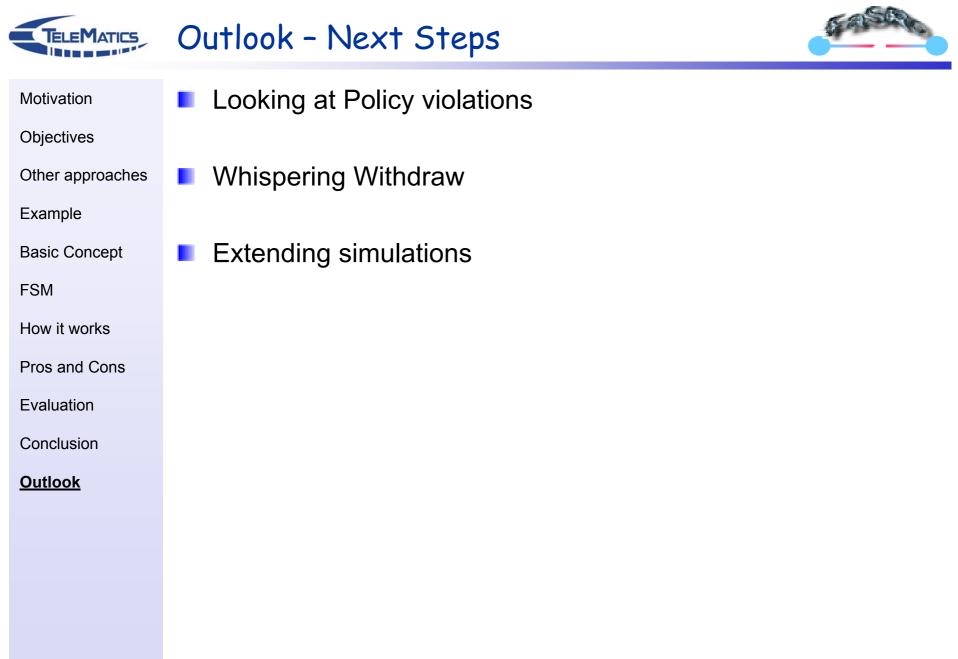
One-Path-Variant

- Only one substitution for the broken link
- Less signaling effort to set up and maintain the FaSRo-Path
- Simpler than BGP
- Short time policy violations
- 8 Risk of bandwidth scarcity
- 8 Not optimal routes for a short period of time

One-Path-Variant makes sense, as only short time failures are handled!



Simulation results


Motivation Objectives		16 ASe (hand made)		10 ASe (BRITE)		20 ASe (BRITE)	
Other approaches		FaSRo	BGP ¹	FaSRo	BGP ¹	FaSRo	BGP ¹
Example Basic Concept	Message ratio	33%	100%	8%	100%	5%	100%
FSM How it works	Convergence time ratio	88%	100%	58%	100%	49%	100%
Pros and Cons <u>Evaluation</u>	¹ – Light weight BGP implementation				mentation		
Conclusion	 Definition of Message ratio BGP, FaSRo : ^{#updates} Total number of BGP updates 						
CullOOK	Definition of Convergen			ounes			

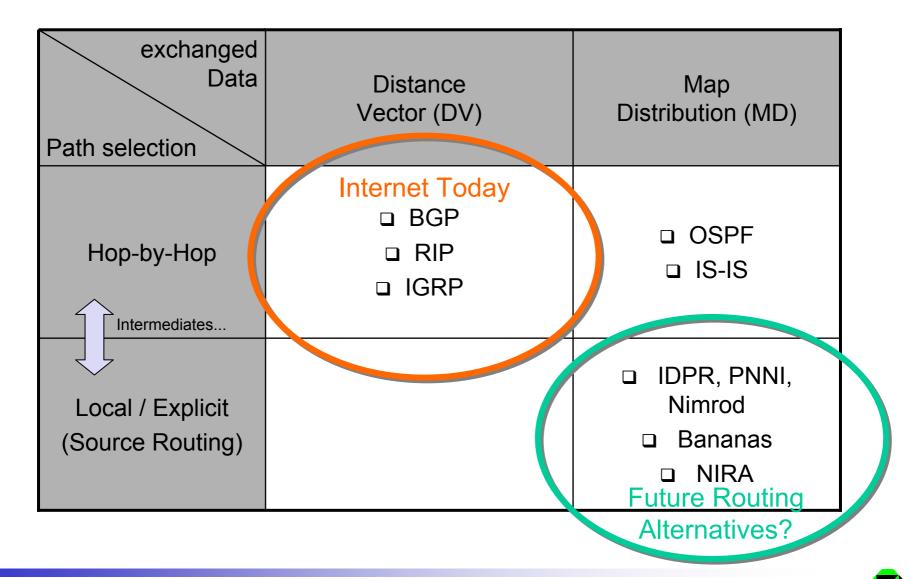
BGP, FaSRo : $\frac{\Delta(start_failure, failure_handled)}{\Delta(start_failure_{BGP}, failure_handled_{BGP})}$

Easy to install

Questions ? Comments !

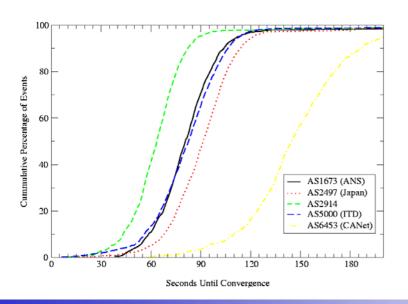
Götz Lichtwald

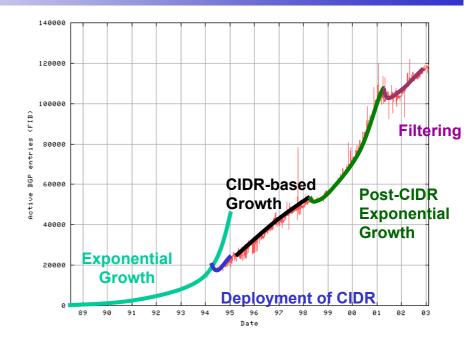
lichtwald@tm.uka.de

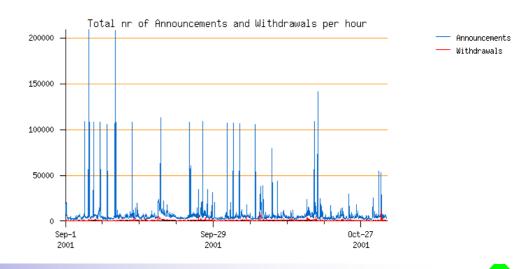

Institut für Telematik

Explicit Routing Concepts

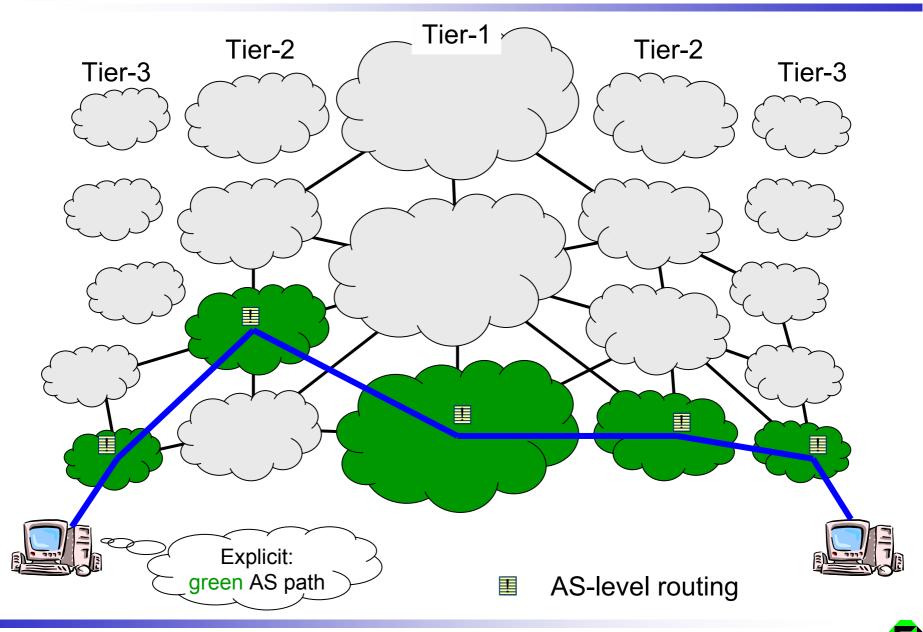
Uwe Walter


TELEMATICS Some Advantages and Disadvantages


- Hop-by-Hop Path selection
 - 8 Need global consistency to avoid loops
- Explicit Path selection
 - Allow trivial testing and deployment of new algorithms
 - More user control about path selection
 - More immune against loops
 - Higher robustness against attacks (at least: scope is reduced)
 - Some optimization problems cannot be handled by Hop-by-Hop architectures
- Distance Vector
 - Need fewer ressources (CPU & Memory) than Maps
- Map Distribution
 - Easier to harden against attacks
 - Can react faster to (e.g. topology) changes and stabilize faster
 - Need less bandwidth during significant changes
 - Policy Routing (e.g. QoS, security) possible



- Some BGP problems / problems-to-come:
 - □ Scalability (Prefix growth)
 - Update message load & Convergence time
 - Growing Policy
 Configuration "nightmares"
 - Only metric: Shortest-AS-path



What?

TELEMATICS Concept: Explicit Routing on AS-level

- □ Smaller routing tables (currently factor 10 + ASes grow slower than hosts)
- □ Transparent migration possible (no flag day necessary)
- Enables explicit path selection
 (Users may enforce their own policies)
 - Flexible routing options possible
 (QoS, Inclusion, Exclusion, etc.)
 - □ Trivial testing and deployment of new routing algorithms
 - □ Fast failure reaction (user just selects new path)
 - Encourages network modernization and advances new technologies by stimulating competition
 - □ More immune to router errors
 - □ BUT: provider compensation must be ensured

TELEMATICS Disadvantages & Problems

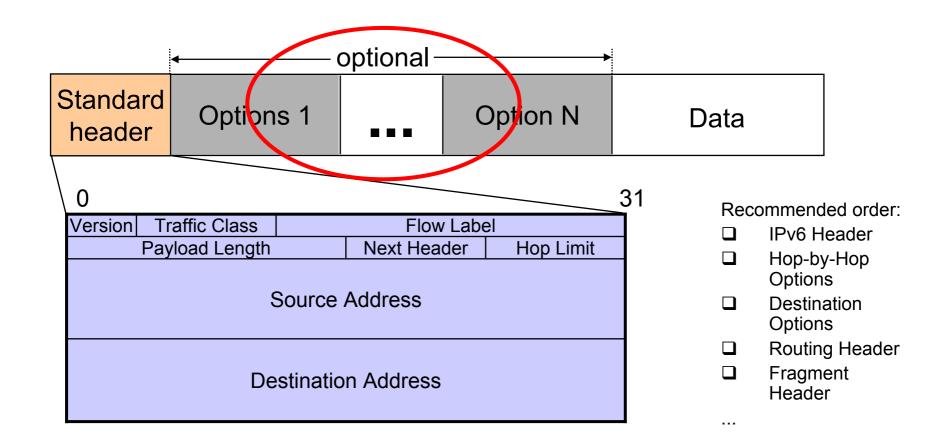
- □ Probably: No fixed header length (breaks fast-path?)
- □ Asymmetric routing: Path back?
- Fine granularity of prefix-based routing and its advantages could easily be lost
 - □ Load-balancing
 - □ Multi-Homing
 - □ Fine grained Policies

How?

Version (4)		Header Length (4)			
Type of Service (8)					
Т	Total Length (16)				
Identifier (16)					
Flags (3)	Flags (3) Fragment Offset (13)				
Time to Live (8)					
Protocol (8)					
Header Checksum (16)					
Source Address (32)					
Destination Address (32)					
Options: Destination AS: 553					
Data (variabel)					

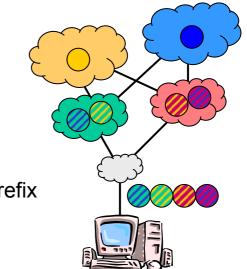
or: Prepend with MPLS-like header?

Problems:


- $\hfill\square$ Overhead
- Routers' Fast-Path

Version	Version (4) Header Length (4)				
	Type of Service (8)				
	Total Length (16)				
Identifier (16)					
Flags (3)	Flags (3) Fragment Offset (13)				
Time to Live (8)					
Protocol (8)					
Header Checksum (16)					
Source Address (32)					
Destination Address (32)					
Options: AS Path: 340 720 1060 332 553					
Data (variabel)					

Header options (similar to IPv4):

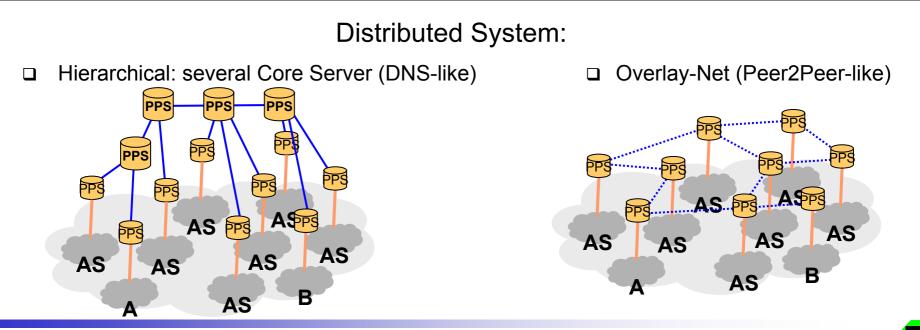


- □ NIRA New Internet Routing Architecture
 - □ Strictly hierarchical provider-rooted IP(v6) address scheme
 - □ AS Path selection via address selection
 - Topology Information Propagation Protocol

IP(v6) address prefix

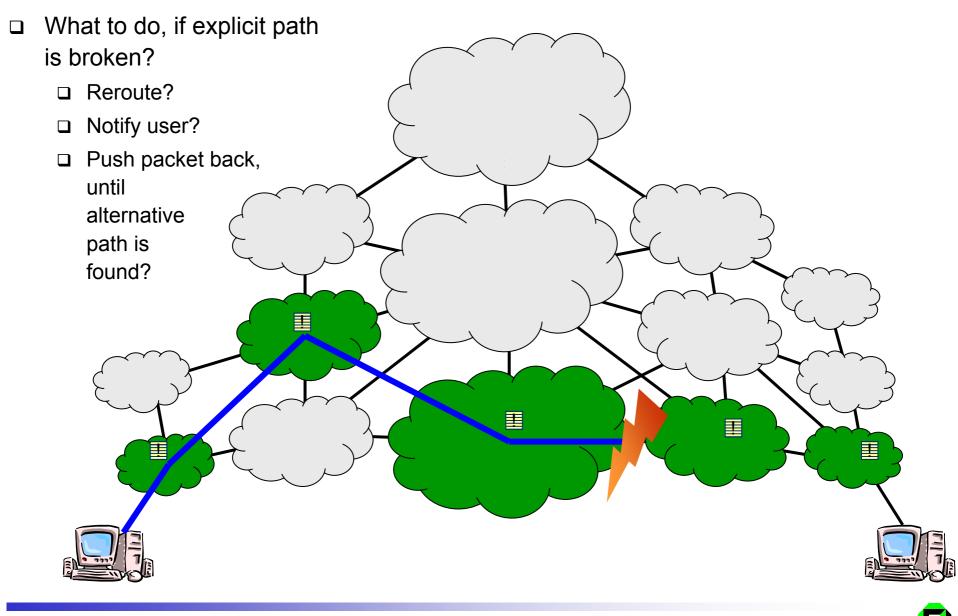
□ BANANAS – Evolutionary Framework for Explicit and Multipath Routing

- □ see SIGCOMM 2003
- □ Encoding of Paths through global hash IDs
- □ NIMROD (1996)


- Client does not set path at all ⇒ ISP choses default one (e.g. when receiving the packet at the first-hop-router)
- 2. Client downloads policies and selects path himself
- Client requests suitable paths (according to its criterias)
 from ISP's *Routing Server*

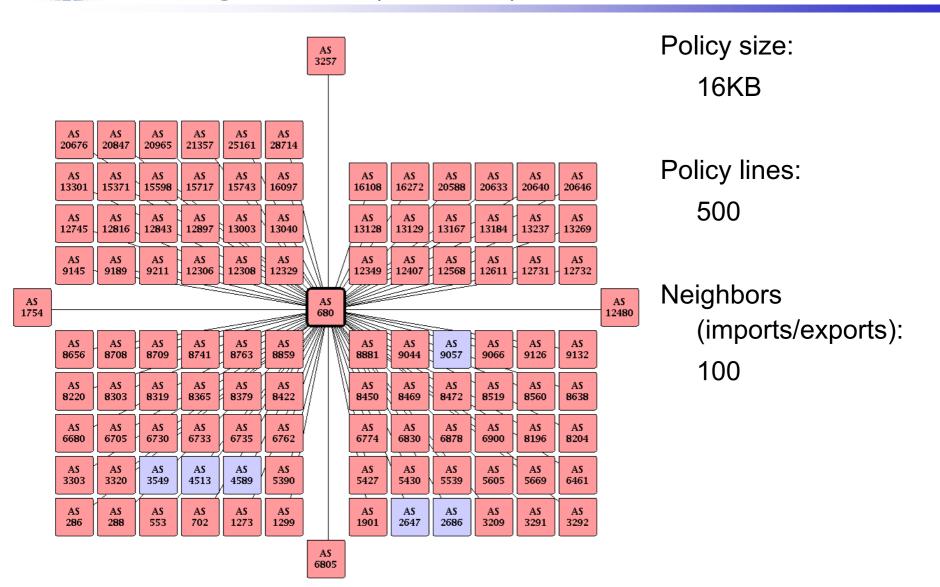
RS

- Stores information about the complete Internet topology
- □ Offers (public) policies to be queried
- □ Information gathering:
 - Looking-glass concept: Listening to BGP
 - Cannot gather unfiltered information!
 - Active notifications of all ASes: ISPs upload their policies
 - information out-of-date problems



TELEMATICS Routing Server: Pros and Cons

- 🗅 🙂 Pro
 - □ New policies can be verified (interesting!?)
 - □ Propagation of BGP updates could be limited
 - □ All (public) policies are retrievable
 - □ Coherent view of topology possible
 - More additional information storable (AS supports QoS, NGN services, etc.)...
- 🗅 😕 Cons
 - □ Failure Case unresolved (see next slide)
 - □ Some (important?) Policies are confidential
 - □ New Point-of-Failures
 - Routing Server-Load (Update storms, DDOS attacks)
 - □ Memory & Processing power?



Some Estimations

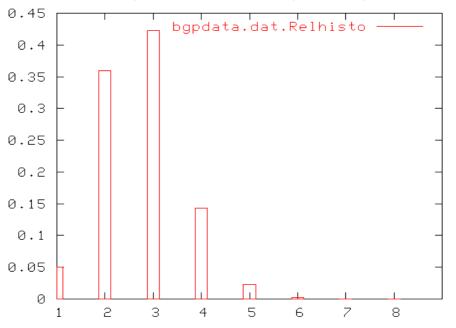
TELEMATICS Neighbors (imports/exports): AS 680, DFN

Neighbors (imports/exports): AS 8560, Schlund+Partner AG

									,43 846										
	AS 24851	45 24875	AS 24885	4 5 24933	45 24 996	45 25161	AS 25179	,4 5 252 09			AS 28685	AS 28788	AS 28878	AS 29639					
	AS 20847	AS 20854	,45 2 09 40	AS 20953	AS 21 099	45 21155	4 5 21221	AS 21385			,4 <u>5</u> 21392	,45 21398	AS 21473	AS 21476	AS 21478	/4 S 24587	AS 24646	AS 24730	
	.45 2 0 495	45 20500	,4 <u>5</u> 2 050 4	45 20532	45 20547	45 20562	/45 20639	.45 20640			,45 20646	45 2 0 676	AS 20679	45 20689	45 20718	45 20735	45 20747	45 20786	í
	4 5 15717	4 5 15743	45 15758	45 15861	45 15879	45 15915	45 15933	.4 <u>5</u> 15959			,45 159 60	45 16237	AS 16265	4 <u>5</u> 16272	45 16298	45 16318	45 16334	45 20481	
	AS 13646	45 15371	AS 15412	AS 15426	AS 15435	AS 15436	AS 15444	.45 15477			45 155 09	AS 15517	45 15569	AS 15598	AS 15600	45 15623	45 15635	AS 15670	
	AS 12871	45 12897	/45 12902	45 12956	AS 12989	45 060E1	45 10111	AS 13127			45 13129	AS 13148	AS 13184	45 13213	AS 13237	AS 13246	45 13269	AS 13285	
	AS 12419	AS 12480	/45 124 96	45 12513	45 12568	AS 12611	AS 12621	.45 12634			AS 12654	4 5 12722	45 12731	4 5 12745	45 12832	45 12843	AS 12859	AS 12868	•
	AS 9143	AS 9145	45 9150	25 9819	45 1919	45 9200	45 9211	.45 12306			AS 123 0 8	AS 12312	45 12337	AS 12347	45 12 390	/45 12399	AS 12407	AS 12414	
,45 8708													AS 13132						
	45 8785	AS 8851	45 8859	AS 8881	45 8897	AS 8912	2A 8188	,45 8928			2A 8939	,45 8954	45 9013	45 9019	AS 9044	45 9066	AS 9019	AS 9132	
	AS 8469	AS 8472	AS 8514	45 8520	45 8546	45 8553	45 8582	AS 8586			AS 8608	AS 8638	45 8657	AS 8737	AS 8741	45 8743	AS 8763	AS 8767	
	45 8210	45 8220	AS 8222	45 8251	45 8271	AS 8272	45 8308	.45 8319			AS 8341	45 8365	.45 8379	45 8406	45 8422	45 8426	45 8437	45 8447	
	AS 6695	.45 6705	45 6728	45 6730	45 6735	45 6751	6774	45 6779	$\ $	١	AS 6805	45 6830	45 6871	45 6900	45 7911	45 8001	AS 8068	AS 8196	
	45 5571	45 5583	45 5587	45 5588	45 5597	45 5604	45 5 60 5	.45 5611			AS 5631	.45 5669	45 6067	45 6320	45 6327	45 6461	AS 6661	45 6667	
	.45 3491	4513	45 4589	45 5089	45 5388	45 5390	AS \$400	AS 5417			AS 5427	45 5430	45 5459	4 5 5462	45 5466	45 5503	45 5539	45 5557	
	AS 2686	45 2818	45 2856	45 2857	AS 2861	AS 2914	AS 32 09	,4 5 3246			45 3265	45 3291	AS 3292	45 3303	45 3320	45 3328	45 5555	45 3356	
	45 553	AS 680	AS 786	AS 1136	AS 1239	AS 1257	AS 1299	AS 1668			45 1759	AS 1898	AS 1901	AS 2110	45 2529	AS 2611	AS 2647	AS 2649	J
AS 21673																			

TELEMATICS Neighbors: AS 702, UUNet Europe

NG.	Policy size:					
	180KB					
	Policy lines:					
	2500					
	Neighbors					
	(imports/exports):					
	1200					



Estimation about Route server table size

15000 ASes, each 250 Neighbors, with 50KB policies:

< 1 GB memory for complete database

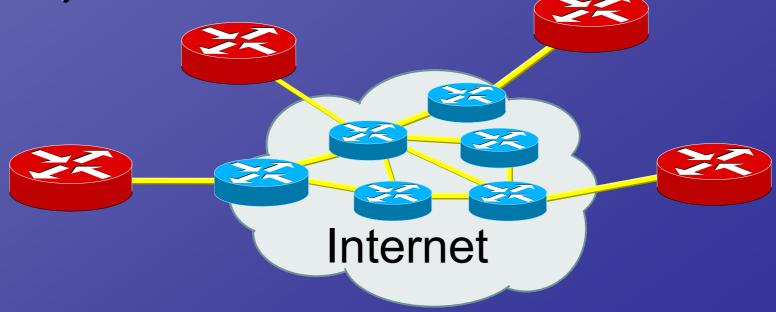
3,75 million "links"

Average e2e AS path length histogram:

⇒ The database of the Routing Server should be feasible (and does almost already exist in form of the RIPE and RADB, but heavily out-of-date)

Olaf Maennel

Technical University Munich

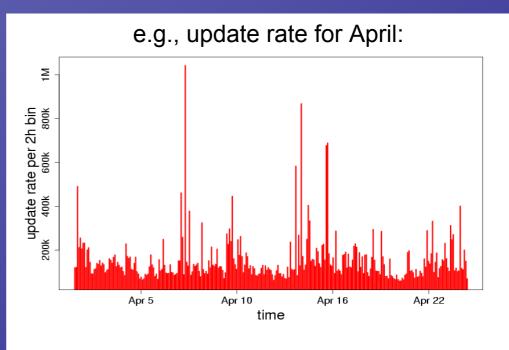


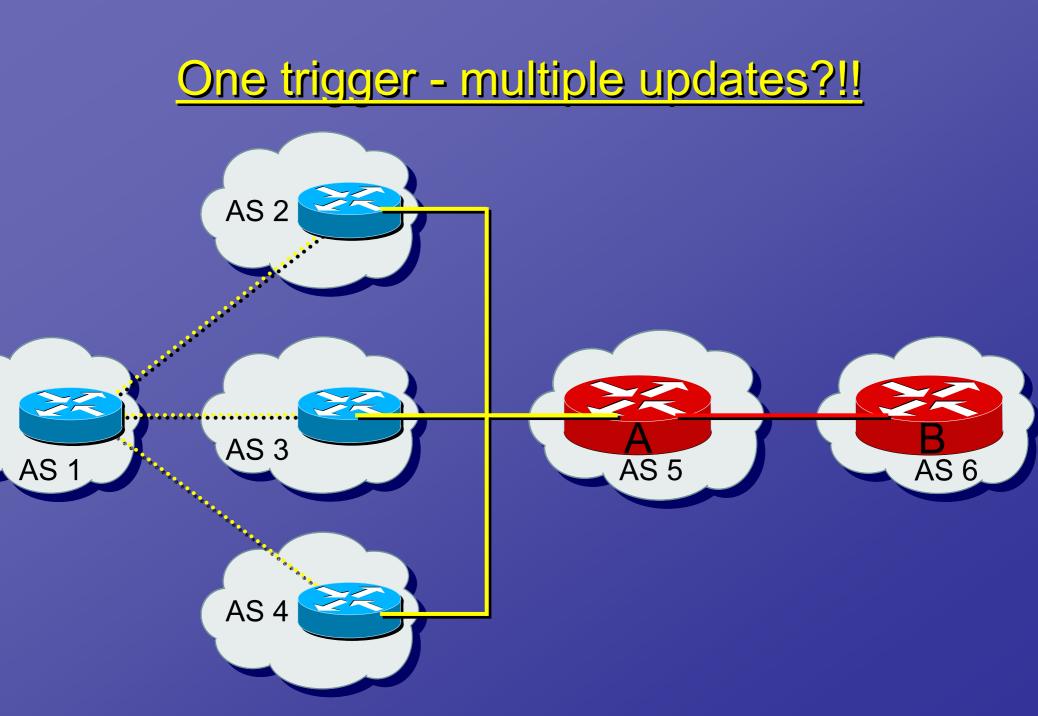
Alexander Tudor Agilent Laboratories

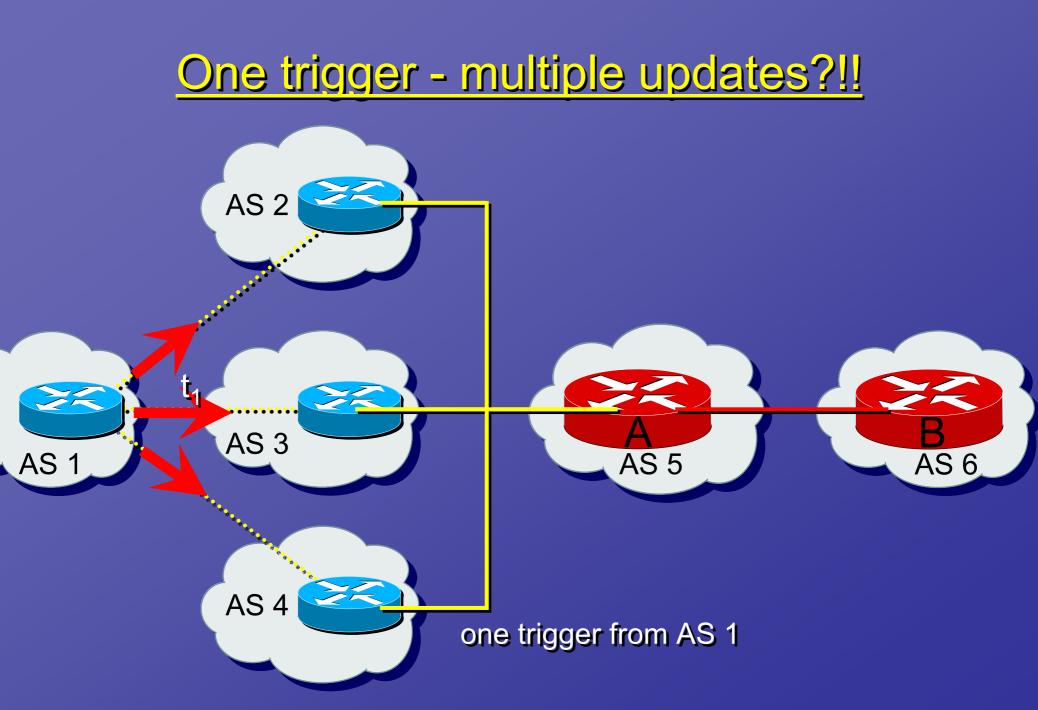
Anja Feldmann Technical University Munich

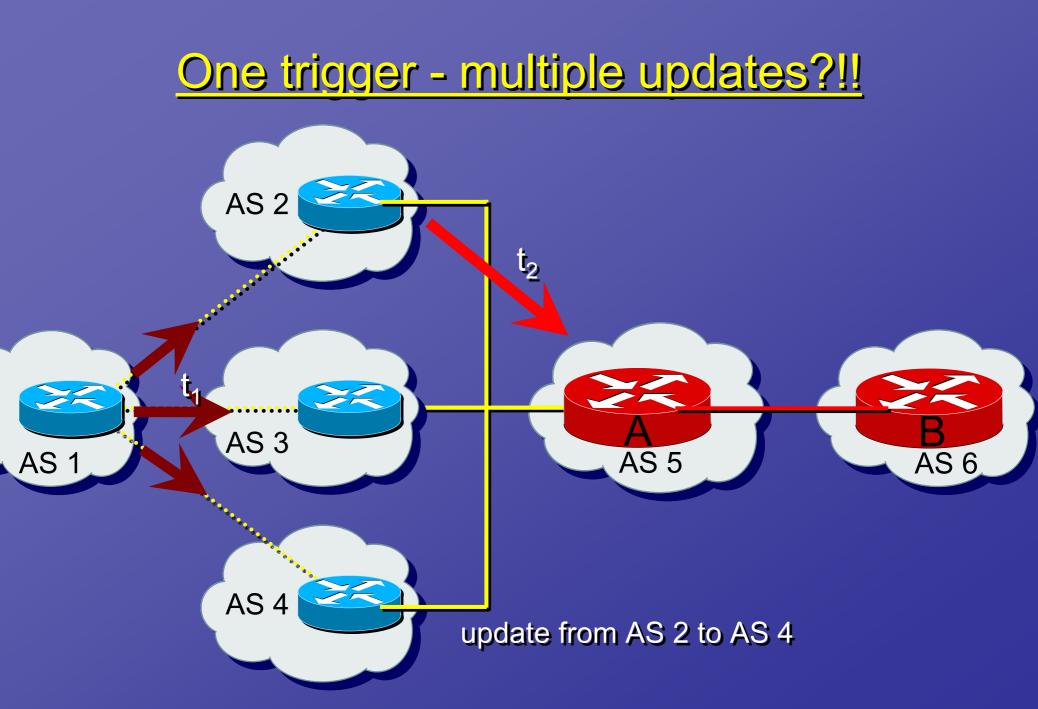
<u>Outline</u>

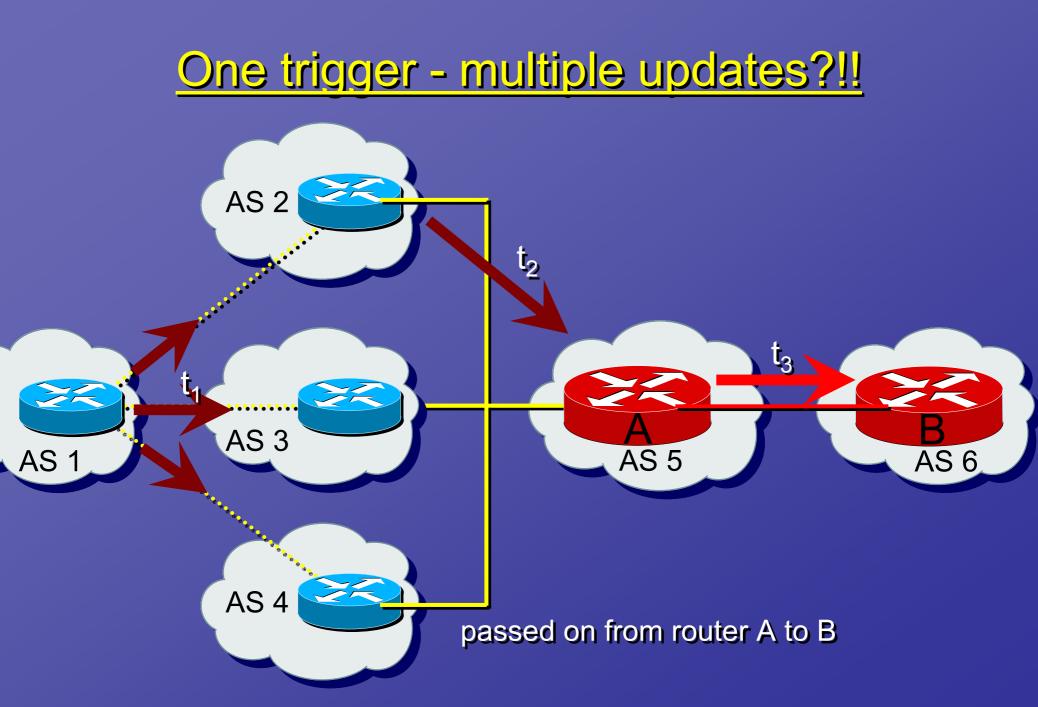
- One trigger multiple updates?!!
- Observed BGP convergence properties
 - small timescale behavior
 - larger timescale analysis
 - relationship between multiple viewpoints
- Summary

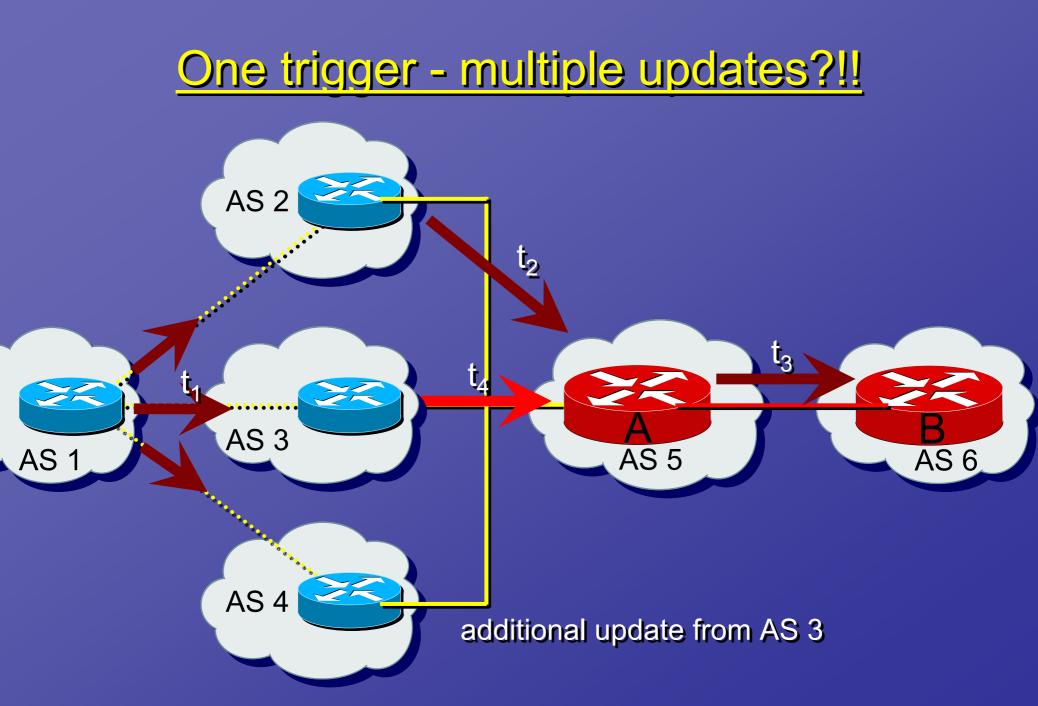

RIPE RIS project :

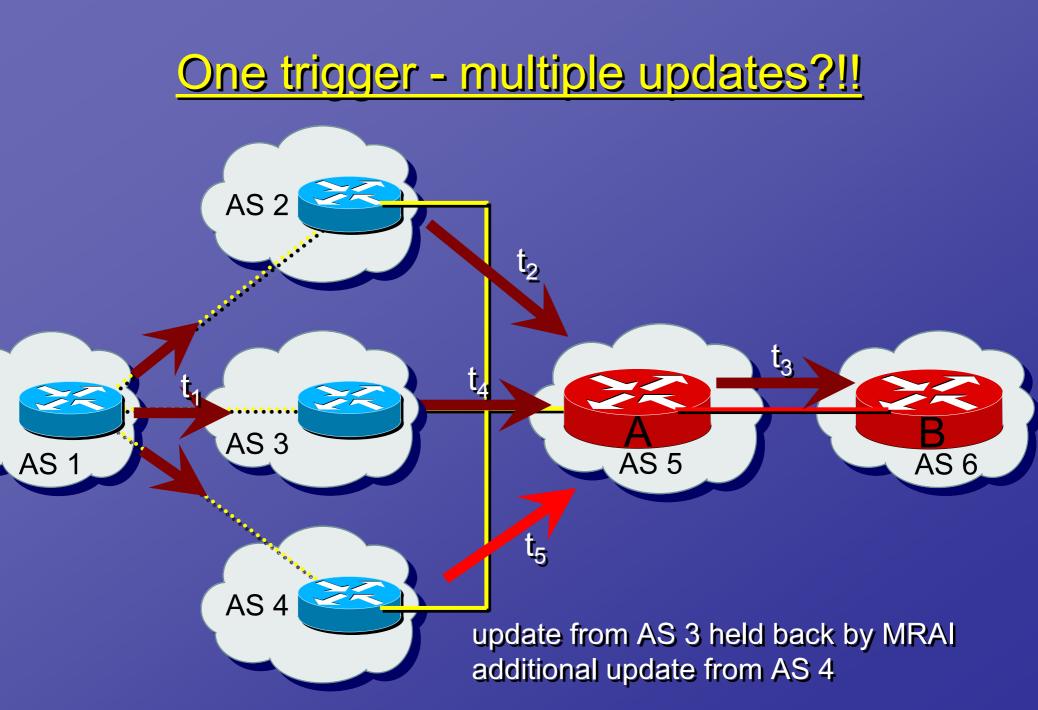

(http://www.ripe.net/ris/)

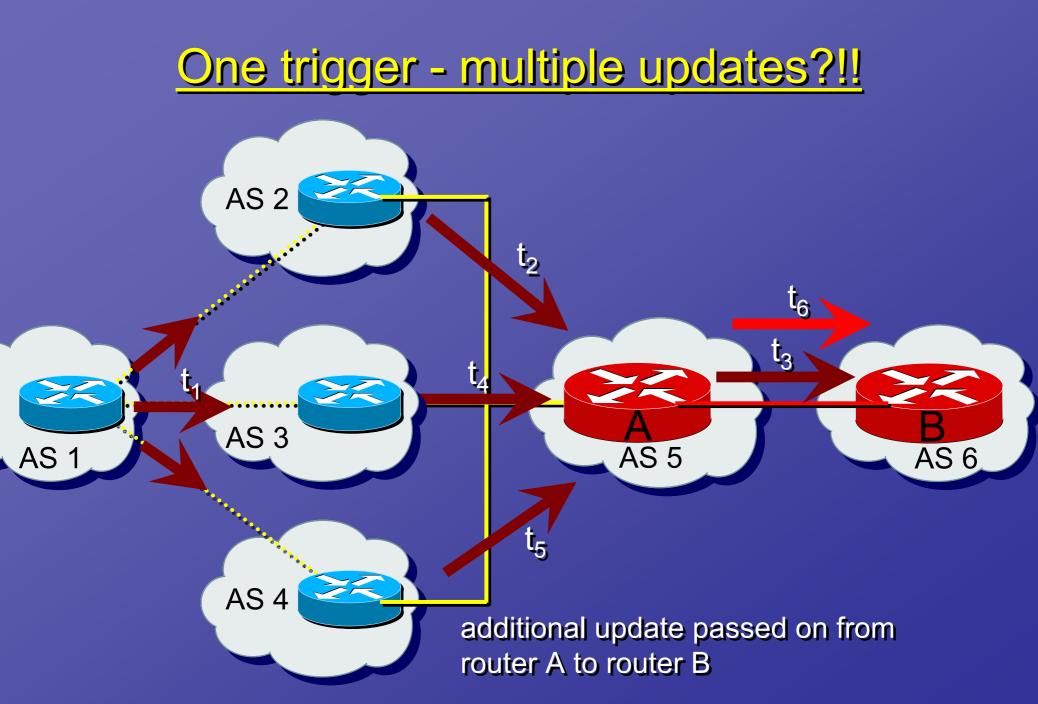

Collector: RRC00

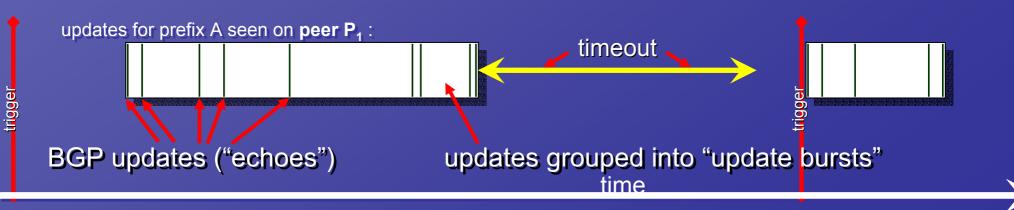

- 100k-123k prefixes - on 11-13 "default free" peers
- January, 2003 1/1-1/31 (≈69 Million updates)
- February, 2003 2/1-2/28 (≈61 Million updates)
- March, 2003 3/1-3/31 (~47 Million updates) <u>Missing data for 4 hours (3/6 6:08-10:13)</u>
- April, 2003


4/1-4/24 [17h] (≈44 Million updates)

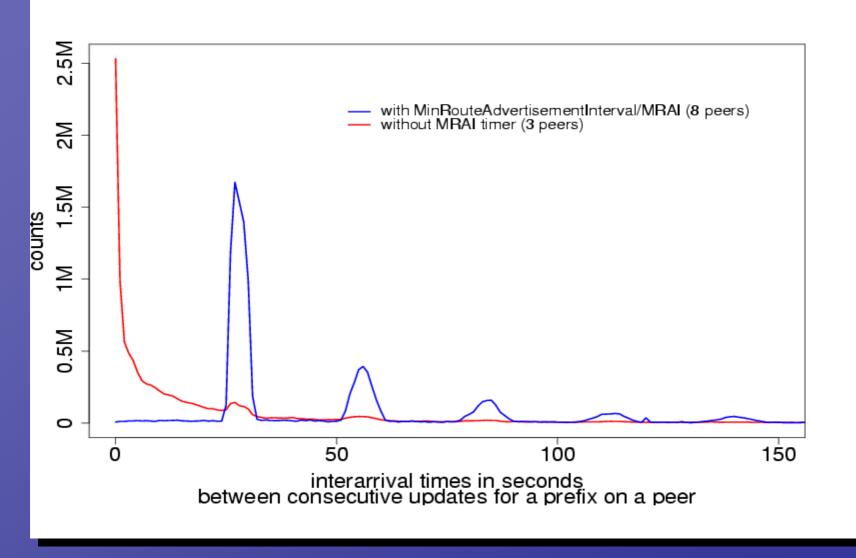






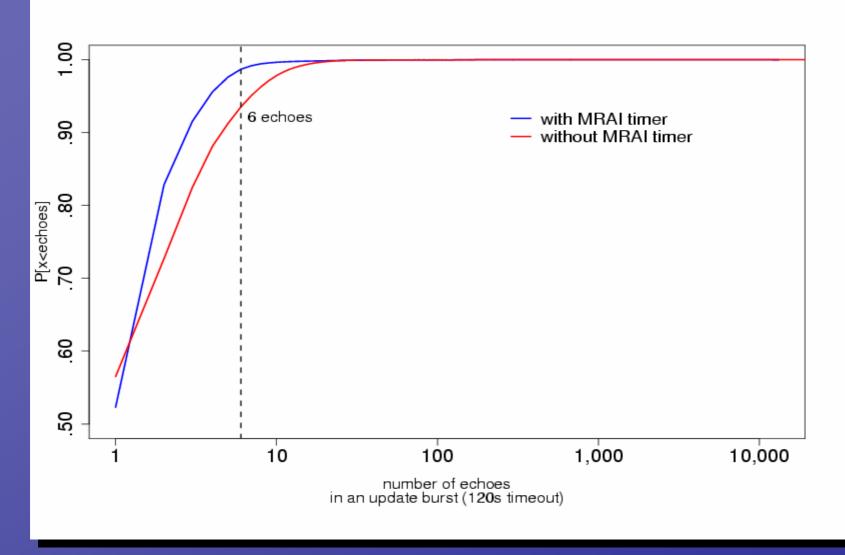

Definition of terms

"<u>echoes</u>" : multiple BGP updates for


- same triggering event
- on one peering session
- for one prefix

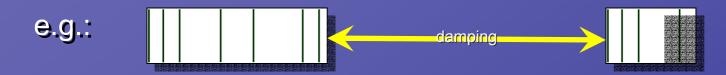
Group updates into "update bursts" :

- same prefix / peer
- short time window



Interarrival time between echoes

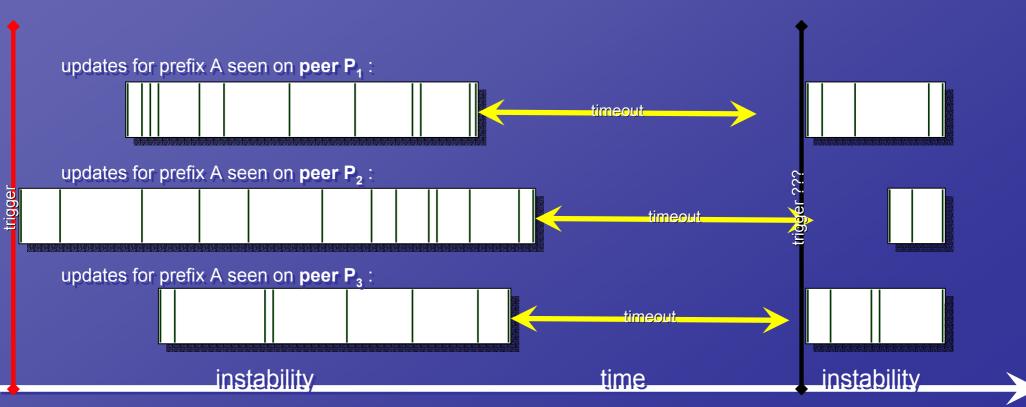
peers without MRAI: lots of echoes - with MRAI: doesn't prevent echoes


Number of echoes in update bursts

damping on peers? without MRAI: 8.3% - with MRAI: 2.4%

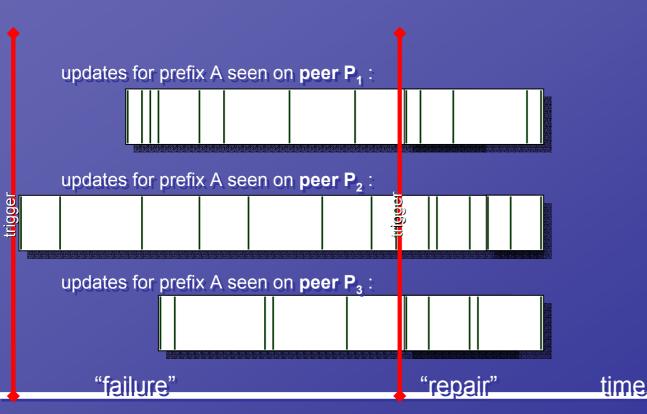
<u>Update bursts vs. convergence</u>

Echoes (\geq 6 updates) can cause damping.

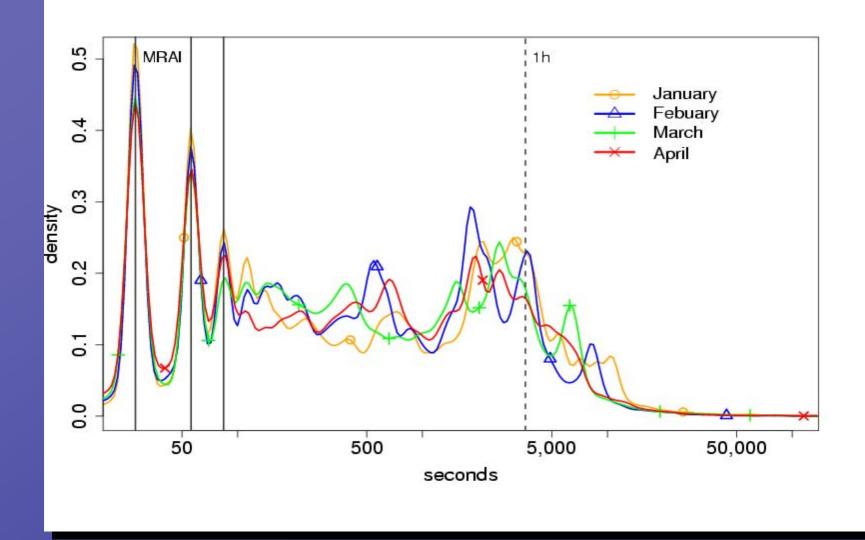


To capture BGP convergence:

- identify "stable" route
- account for damping, overloaded routers, etc.
- \Rightarrow timeout > 1 h


Regarding BGP convergence

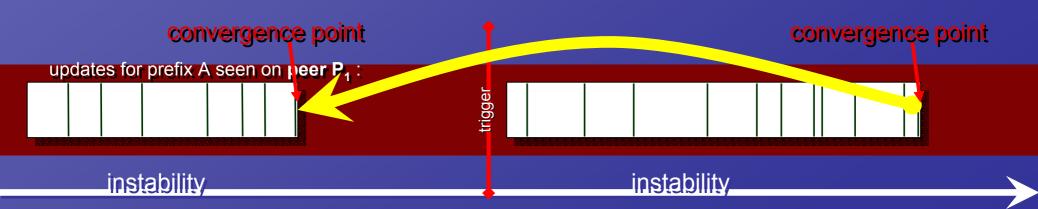
- timeout too small: can't capture all effects
- timeout too large: combine several instabilities in one burst



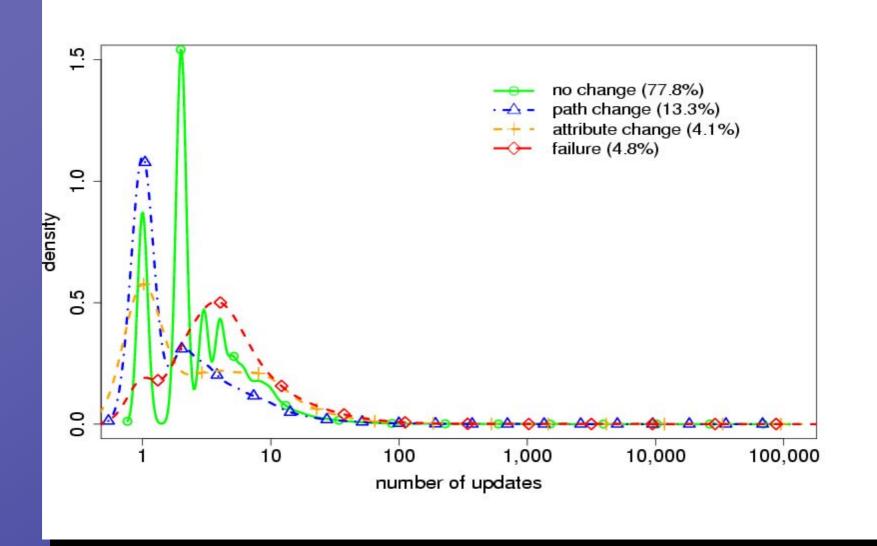
Regarding BGP convergence

- timeout too small: can't capture all effects
- timeout too large: combine several instabilities in one burst

Update burst duration

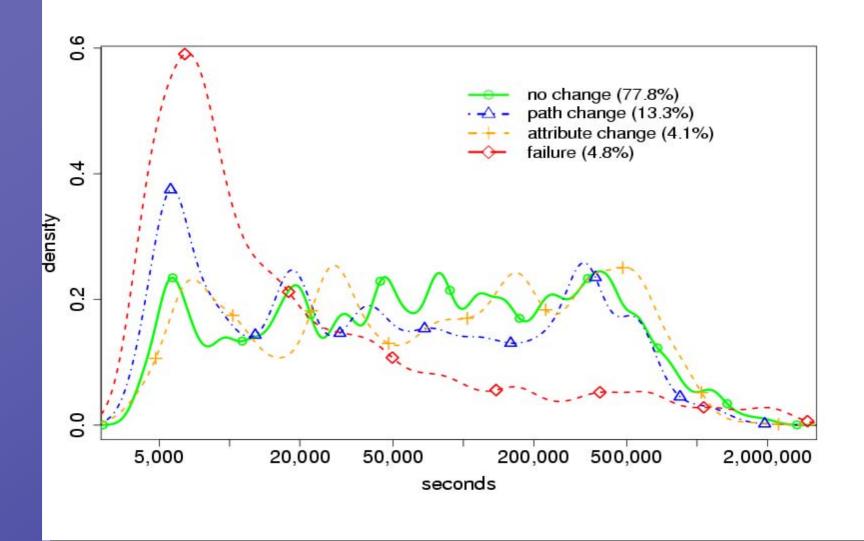

convergence can take rather long...

Important updates in update bursts


Last update in update burst = "convergence point"

- is result of convergence process
- is a "stable" prefix (at least for some time > timeout).

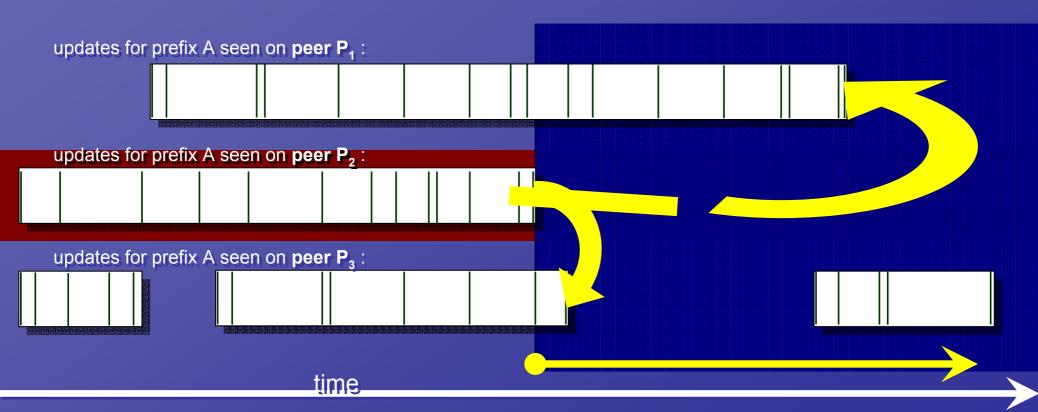
One prefix – several update bursts:
– how do the convergence points differ?
⇒ compare last updates in update bursts.



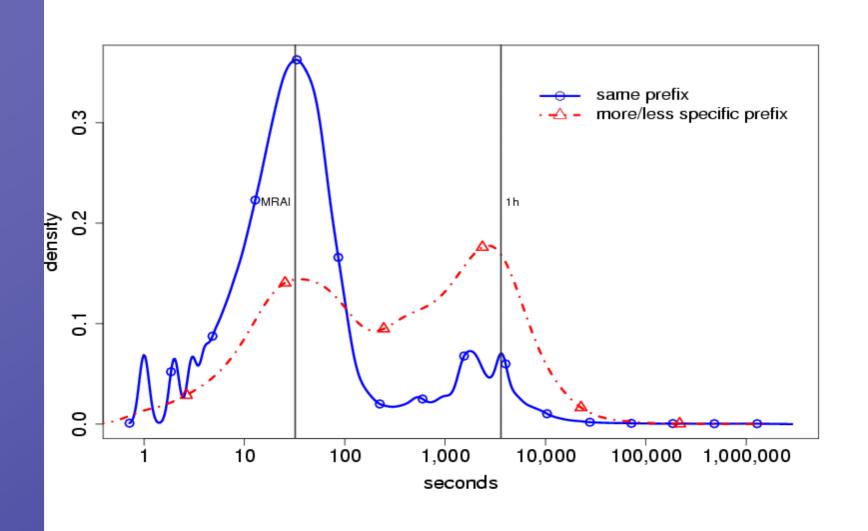
Number of updates in update bursts

most bursts: only a few updates - some bursts: huge # of updates!

Interarrival time of update bursts

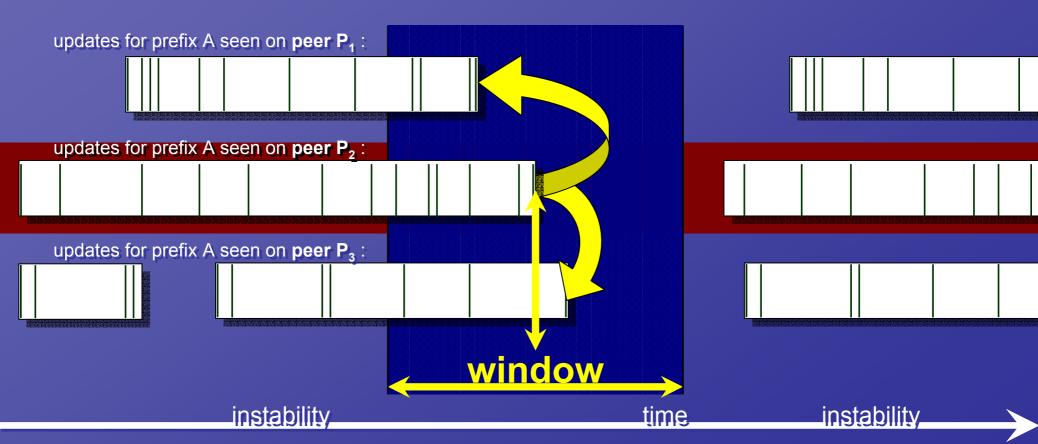


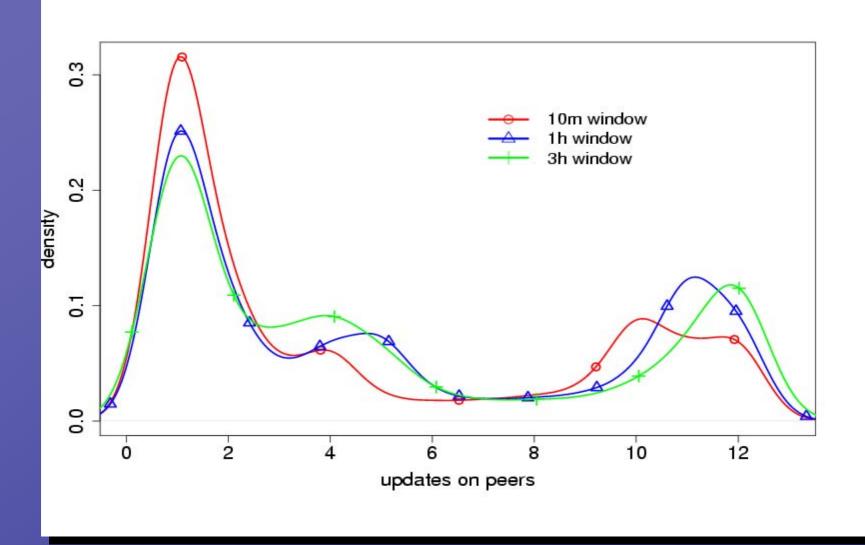
time to next update burst: unpredictable


Convergence points on different peers

Do all peers converge at the same time?

- pick one prefix on one peer
- find other peers with active update bursts
- compute time difference between convergence points


Time difference between convergence points


5% of prefixes: with more/less specific update burst

Convergence points on different peers

Problem: depends on which peer is picked Approach: use sliding window to locate convergence points

Bursts observed on different peers

update distribution: locally or globally visible

<u>Summary</u>

Today's BGP convergence depends on

> MRAI

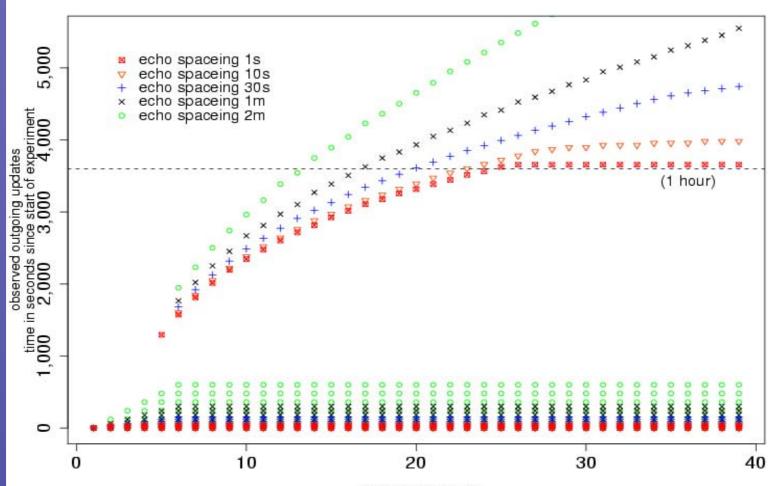
shorter MRAI leads to :

- more echoes and to more damping and
- to faster convergence if damping is not aggressive...

Damping settings

- damping occurs for normal prefixes!
 (BGP path exploration may need ≥ 6 echoes, and depends on interconnectivity)
- damping helps for unstable prefixes

Further information


If you are interested, please visit our website:

http://www.olafm.de/

Questions? Comments?!

Thanks !

Additional slide

number of "echos" number of updates send to the router

Routing-Convergence of RFC2547bis-VPNs

Inter-Domain Routing Workshop 2003

Lx Manhenke, Consulting Engineer, Ix@cisco.com

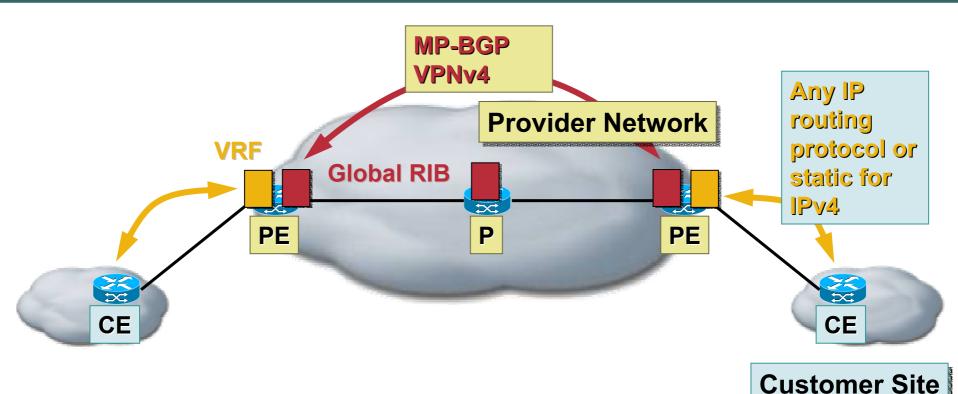
Agenda

Cisco.com

- RFC2547bis Architecture
- Analysis of Convergence Components
- Options for Improvement

Cisco.com

RFC2547bis Architecture


Presentation_ID © 2003 Cisco Systems, Inc. All rights reserved.

Draft RFC2547bis

- Draft based on RFC2547
- Document of the L3VPN working Group of the IETF
- Reference: <u>http://www.ietf.org/internet-drafts/draft-ietf-l3vpn-rfc2547bis-01.txt</u>
- Based on Peer Model VPN-Sites connect to a cloud (Provider Network) rather than being directly connected
- MP-BGP used as Control Plane Protocol to distribute customer L3 information in form of VPNv4 routes
- VRFs on Edge Routers to separate VPN routing tables
- MPLS or any other tunneling encapsulation to tunnel the VPN data packets through the Provider Network

RFC2547bis Architecture

P – Provider Router
PE – Provider Edge Router
CE – Customer Edge Router
VRF – VPN Routing and Forwarding Instance
RIB – Routing Information Base

Presentation ID

Cisco.com

Analysis of Convergence Components

Presentation_ID © 2003 Cisco Systems, Inc. All rights reserved.

Routing Convergence

Cisco.com

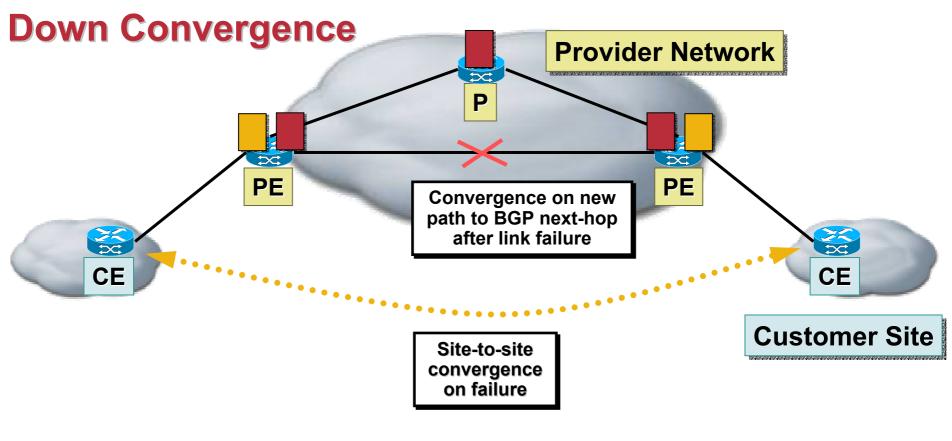
Convergence needs to be assessed in two main areas

Convergence within the MPLS/VPN backbone

Convergence between VPN client sites

And with two separate scenarios...

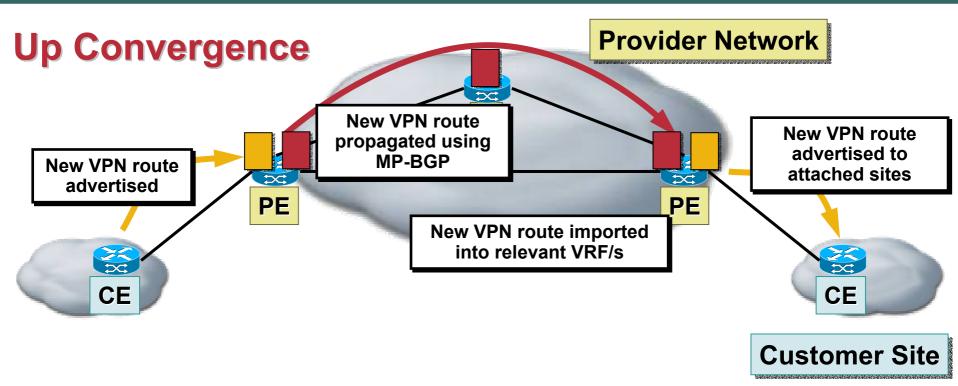
Convergence on platform/network failure


➡ DOWN CONVERGENCE

Convergence on new routing information

➡ UP CONVERGENCE

DOWN Convergence Analysis


Cisco.com

Site-to-site and MPLS VPN Backbone IGP convergence are independent

UP Convergence Analysis

Cisco.com

Site-to-site convergence on new VPN client routing information

Convergence across Backbone

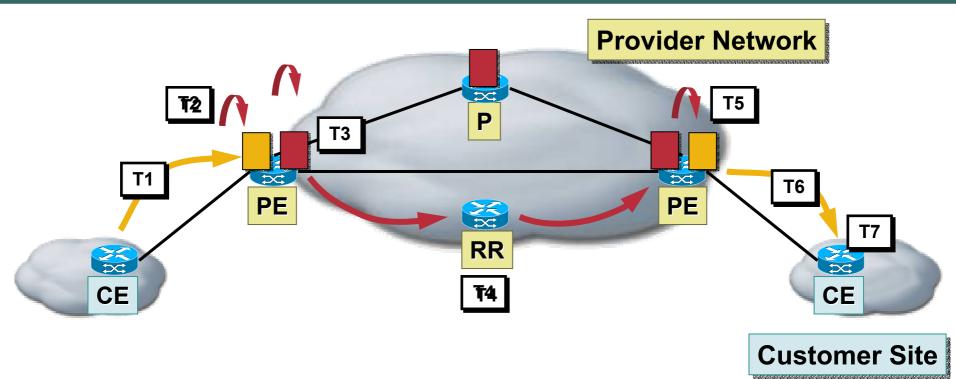
Cisco.com

Convergence of MPLS/VPN backbone IGP will not affect client-to-client route convergence

Unless BGP next-hop becomes unavailable;

but will affect client-to-client traffic while backbone converges

• Focus on Site-to-Site Up/Down Convergence


Site-to-site Convergence Points

Cisco.com

- Several main convergence areas
 - **T1** Advertisement of routes from CE to PE
 - T2 Placement into VRF
 - **T3** Propagation of VPNv4 routes to BGP neighbors
 - T4 Reflection of VPNv4 routes to PEs
 - **T5** Import process of these routes into relevant VRFs
 - **T6** Advertisement of VRF routes to attached VPN sites
 - **T7** Processing of VPN routes on the CE routers

Site-to-site Convergence Points

Cisco.com

Site-to-Site Convergence Points

Backbone Route Propagation

Cisco.com

 Change are not propagated to other BGP speakers immediately

Batched together and sent at advertisement-interval

Default is every 5 seconds for iBGP, 30 for eBGP

 Can be tweaked using the neighbor advertisement-interval command

Needs to be changed for both backbone and CE routers if BGP between PE and CE

Cisco.com

Scanner process will also have an affect on convergence

Used to check next-hop reachability and to process any network commands within the BGP process

Invoked every 60 seconds by default for IPv4 and VPNv4 prefixes

Can be tuned with BGP scan-time command

Large BGP table and small scan-time can be very CPU intensive—beware!

Import Process

Cisco.com

Import process uses a separate invocation of the scanner process

Every 15 seconds by default

Can be tuned using the BGP scan-time import command

Could take up to 15 seconds for a route to be placed into a receiving VRF

And then potentially a further 30 seconds to be advertised to CE if eBGP is in operation!

Maximum UP Convergence Summary

Cisco.com

		BGP-4	RIP V2	OSPF	Static
	T1_max	30 (Default Adv Int)	30 (0 with Triggered)	Variable (Time for LSA Propagation)	0
	T2_max	0	0	0	0
	T3_max	0	0	5	0
	T4_max	10 ((n+1) * Adv Int)	10 ((n+1) * Adv Int)	10 ((n+1) * Adv Int)	10 ((n+1) * Adv Int)
	T5_max	15	15	15	15
	T6_max	30 (Default Adv Int)	30 (0 with Triggered)	Variable (Time for LSA Propagation)	0
	T7_max	0	0	5	0
	Total	~85 Seconds	~85 Seconds or ~52 Seconds (with Triggered)	~35 Seconds	~25 Seconds
Presentation ID		© 2003 Cisco Systems, Inc. All ri			

Presentation_ID

© 2003 Cisco Systems, Inc. All rights reserved.

Cisco.com

Options for Improvement

New Requirements for BGP

Cisco.com

- Focus for BGP Implementation in the past was scalability and most important stability for Internet Routing
- Use of scan timers in the implementation of BGP suits very well for that purpose
- Today MP-BGP is used for more than just Internet Routing Control Plane
- Applications like RFC2547bis require additionally to scalability and stability also faster convergence

Options for Improvement

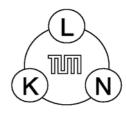
- MP-BGP as protocol suites very well for the new applications
- Current MP-BGP implementations can be improved to achieve better convergence e.g.:

 Use of event triggered implementation and back-off algorithms at the same time

 Eliminates delays of scan timers and protects the system in case of event storms

- Implementation of event queues and schedulers

Allows to give preference to selected routing information over the rest


Cisco.com

Thank You!

CISCO SYSTEMS

Policy based Calculation of the Internet Topology

Thomas Schwabe, Abhijit Chowdhury TU München

Technische Universität München Lehrstuhl für Kommunikationsnetze Prof. Dr.-Ing. J. Eberspächer

Outlook

- 1. Motivation
- 2. Border Gateway Protocol BGP
- 3. Network Management Databases
 - e.g. RIPE database
- 4. Idea
- 5. Example
- 6. Conclusions and Outlook

- Resilience important topic for future networks
 - Need for disjoint backup routes
- How to find disjoint Inter-Domain routes?
 - No trust of BGP path information
- Topology information of an AS depends on BGP policies of its neighbors
- Idea:
 - Combine BGP policies of neighboring ASs
 - Better topology information on IP Layer

- Inter-Domain Routing protocol in today's Internet – BGPv4
- Selection of the best route
 - Import into the Intra-Domain routing protocol
 - Announce to the neighboring networks
 - Based on
 - BGP Policies
 - Path attributes
 - AS hop count (part of the BGP announcement)

- It works, but it may be not fulfill the requirements of future Inter-Domain routing:
 - Convergence time
 - Scalability
 - Number of BGP messages

- Rules for filtering of BGP messages
- Reason for the success of BGP
 - Realization of business relationship of AS provider
- Provides a lot of problems
- Influence of routing decisions of neighboring networks
 - Setting of BGP Attributes
 - Announcement of selected routes

Network Management Databases

- Examples:
 - RIPE
 - ARPIC
 - etc.
- RIPE (Réseaux IP Européens)
 - open collaborative community of organisations and individuals, operating wide area IP networks
 - Founded in 1989
 - Region: Europe, Middle East

AS8208

% This is the RIPE Whois server. % The objects are in RPSL format. 8 % Rights restricted by copyright. % See http://www.ripe.net/ripencc/pub-services/db/copyright.html as-block: AS8192 - AS9215 descr: RIPE NCC ASN block These AS numbers are further assigned by RIPE NCC remarks: remarks: to LIRs and end-users in the RIPE NCC region remarks: Please refer to these documents remarks: <http://www.ripe.net/ripe/docs/ir-policies-procedures.html> <http://www.ripe.net/ripe/docs/asnrequestform.html> <http://www.ripe.net/ripe/docs/asnsupport.html> CREW-RIPE admin-c: tech-c: **OPS4-RIPE** mnt-by: RIPE-NCC-HM-MNT RIPE-NCC-HM-MNT mnt-lower: hostmaster@ripe.net 20010423 changed: changed: hostmaster@ripe.net 20011024 changed: hostmaster@ripe.net 20011120 changed: hostmaster@ripe.net 20020408 source: RIPE aut-num AS8208 CAMELOT-AS as-name: descr: Teamware GmbH descr: Stahlgruberring 11 81829 Muenchen descr: descr Germany from AS1273 action pref=50; accept ANY import: from AS8767 action pref=100; accept ANY import: from AS25063 action pref=100; accept AS25063 import: to AS1273 announce AS-CAMELOT export: to AS8767 announce AS-CAMELOT export: mort: to AS25063 announce ANY admin-c. AI179-RIPE tech-c: AI179-RIPE tech-c: FB23-RIPE multi-homed AS remarks: CAMELOT-MNT mnt-by:

- use BGP policies from a Whols database
- combine BGP policies from neighboring ASs
- get connectivity information
- additional relationship between Neighbors
 - Peering exchange traffic without payment
 - Customer Provider customer pays for forwarded traffic of the provider

import: from AS1273 action pref=50; accept ANY

- AS 1273 -> connection between AS 8208 and AS 1273
- Pref=50 value of the BGP attribute "Local Preference"
- Accept Any base for relationship decision:
 - peering or Customer Provider

Example entries

AS25063 (Inotronic)

- import: from AS8208 action pref=50; accept ANY
- export: to AS8208 announce AS25063

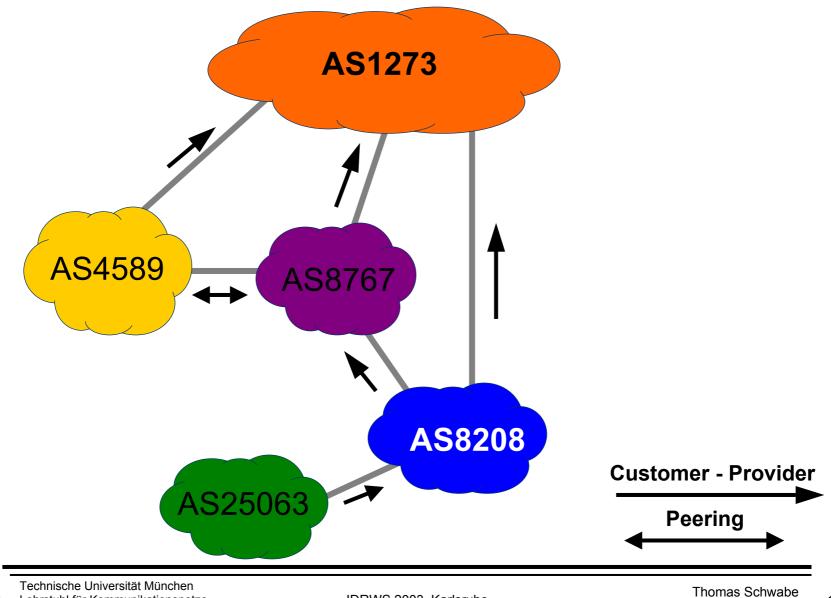
AS8208 (Camelot)

- import: from AS1273 action pref=50; accept ANY
- import: from AS8767 action pref=100; accept ANY
- import: from AS25063 action pref=100; accept AS25063
- export: to AS1273 announce AS-CAMELOT
- export: to AS8767 announce AS-CAMELOT
- export: to AS25063 announce ANY

AS8767 (M'Net)

- import: from AS1273 action pref=100; accept ANY
- import: from AS4589 action pref=80; accept AS-EASYNET
- import: from AS8208 action pref=80; accept AS-CAMELOT
- export: to AS1273 announce AS-MNETDE
- export: to AS4589 announce AS-MNETDE
- export: to AS8208 announce ANY

AS 1273 (Cable&Wireless)


- import: from AS8767 accept AS-MNETDE
- import: from AS4589 accept AS-EASYNET
- export: to AS8767 announce ANY
- export: to AS4589 announce ANY

AS4589 (Easynet)

- import: from AS1273 accept ANY
- import: from AS8767 194.59.190.42 at 194.59.190.8 accept AS-MNETD
- export: to AS1273 announce AS-EASYNET
- export: to AS8767 194.59.190.42 at 194.59.190.8 announce AS-EASYNET

Example topology

Technische Universität München Lehrstuhl für Kommunikationsnetze Prof. Dr.-Ing. J. Eberspächer

Ν

IDRWS 2003, Karlsruhe

Thomas Schwabe schwabe@ei.tum.de 12

- BGP policies can be used for finding Internet topology information
 - Not only connectivity
 - Forecast of Inter-Domain routing
- No bases for Inter-Domain routing

- Base for finding of disjoint routes
- Looking for topology between source an destination
- Topology from a specified starting point (AS)
 - sophisticated limits
 - calculation of the whole topology too complex

Outlook

- Further Work:
 - Comparison with real BGP routing
 - Find topology between specified source destination
 - More efficient tool for evaluation of the BGP policies

Probleme – Lösungsansätze – Bewertungen

IDRW-Workshop, Karlsruhe, 18.09.2003 Stefan Mink, Schlund+Partner AG

Recap: EBGP vs. IGBP

E(xternal)-BGP

- Zwischen unterschiedlichen ASen
- Default: Alle aktiven BGP-Routen werden weitergegeben
- Loop-Erkennung durch AS-PATH-Attribut

I(nternal)-BGP

- Session innerhalb eines ASes
- Multihop-Sessions möglich und üblich
- Nur aktive, eigene oder direkt empfangene externe Routen werden weitergegeben
- Loop-Vermeidung durch **Vollvermaschung**

Problem von IBGP: Full Mesh

Skalierbarkeit

- Schlund (kleines Netz): 25 BGP-Speaker, hätte somit 25*24/2=300 BGP-Sessions
- o Inbetriebnahme des nächsten Routers
 - 25 neue IBGP-Sessions
 - Anderungen an der Konfiguration jedes Routers
- Aufbau einer neuer Transit-Verbindung:
 - 25 Session *130K Routen * 50 Bytes/Update: >160 MByte Daten (1 NRLI pro Update, AS-Path-Länge von 3)
 - ½ bei Versendung von 2 NRLIs pro Update

Problem von IBGP – II

Risiko

- Konfiguration ist automatisierbar, jedoch Fehler mit globaler Auswirkungen möglich
- Fehlen/Beendigung einer BGP-Session kann zu Loops und Blackholes führen

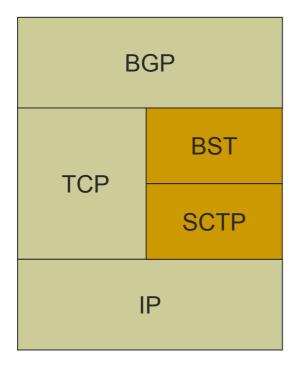
Stabilität

 Auswirkung von Massen-Versand auf andere Dienstes (CPU, Speicher, Bandbreite)

Lösung No. 1: BGP Scalable Transport

- Ansatz von K.Poduri, C. Alaettinoglu, V. Jacobson [BST]
- Grundgedanke von BST
 - BGP an sich ist stabil und gut
 - BGP an sich ist schwer austauschbar
 - Full-Mesh ist reines Transportproblem:
 - Transport gleicher Daten an Empfänger via Pt-to-Pt-Verbindungen
 - Phys. Topologie entspricht nicht den PtP-Verbindungen

BST: Point-to-Multipoint-Protokoll


Protokollalternativen

- Multicasting auf L3/4, z.B. Pragmatic General Multicast (PGM [RFC3208])
- Multicasting auf L3/8, z.B. IS-IS [RFC 1142], OSPF [RFC2328])

BST

- o folgt dem 2. Ansatz
- Grund: leichtere Umsetzbarkeit

BST: Stack-Integration

BGP Scalable Transport:

(Variante von SRM)

- Reihenfolgetreue
- Zuverlässigkeit
- Robustheit

Stream Transmission Control Protocol [RFC2960]:

- Flusskontrolle
- Authentifikation

BST: Datenverteilung

- Fluten auf Anwendungsebene
 - Keine Topologie-Information nötig
 - Keine Konzentration von Updates auf wenigen Verbindungen
 - Redundante Anbindung des Routers resultiert in redundanter Versendung von Routingdaten, somit erhöhter Zuverlässigkeit

BST: Konfiguration

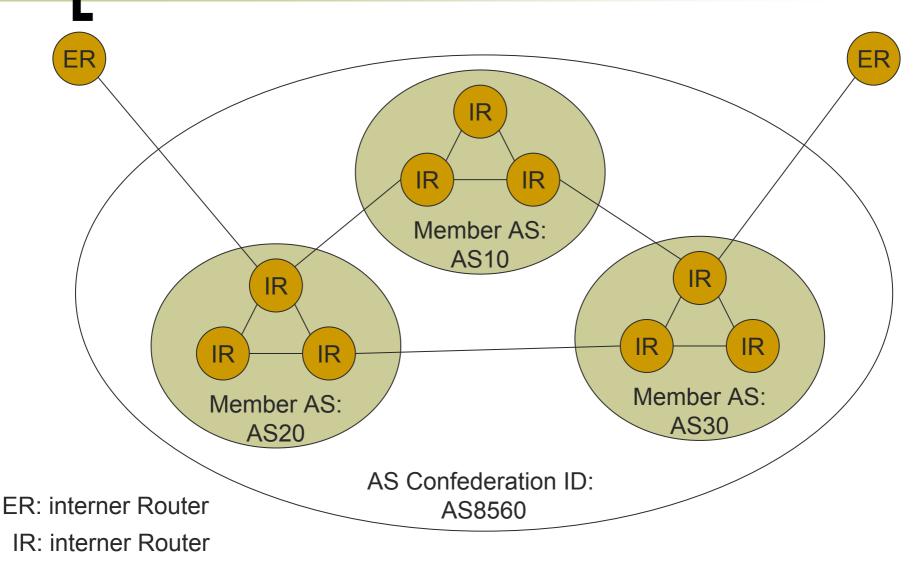
Vereinfachungen durch

- Virtualisierung der Empfänger
 - Eine logische Adresse als BGP-Zieladresse
 - Versand von *Hellos* (evtl. authentifiziert mit MD5 + shared secret [RFC2385])
- Autodiscovery ermöglicht Verzicht auf explizite Konfiguration
- Kopplung von Nicht-BST-Routern an das BST-Mesh angeblich möglich

BST: Bewertung

Vorteile

- Transparenz f
 ür BGP
- o Zuverlässigkeit, Skalierbarkeit
- Geringere Bandbreite und CPU (?)


Nachteile

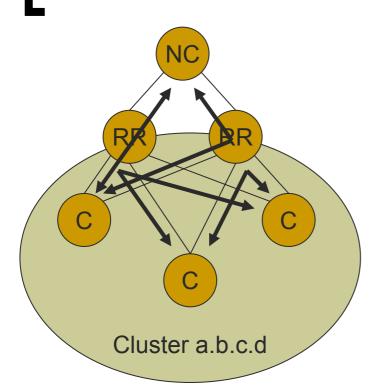
- Announcements bei neuem Router?
- Granularität sinkt, keine individuellen Policies mehr möglich (nötig bei IBGP?)
- Proprietärer Ansatz findet selten Akzeptanz

Lösung No. 2: Confederations

- Erweiterung des BGP-Standards [RFC 3065]
- Klassisches Divide & Conquer
- Lösungsansatz:
 - AS wird zur Konföderation von Unter-ASen
 - Full-mesh innerhalb der Unter-ASe
 - Verbindung zwischen Unter-ASen ähnlich wie zwischen regulären ASen, vermitteln nur aktive Routen zwischen Sub-ASen

BGP-Confeds: Visualisierung

BGP-Confeds: Bewertung


Vorteile

- Offener Standard
- Vollvermaschung nur innerhalb eines Sub-ASes notwendig
- Nachteile
 - Nicht transparent, alle Router müssen es unterstützen
 - Nicht schachtelbar
 - Persistent Route Oscillation (später mehr)

Lösung No. 3: Route Reflector

- Erweiterung des BGP-Standards [RFC 2796]
- Lösungsansatz:
 - Manche Router fungieren als Route-Reflektoren, die zwischen Gruppen von Routern Routen vermitteln
 - Clients: vollvermascht oder isoliert
 - Non-Clients: vollvermascht
 - Reflektoren vermitteln nur aktive Routen zwischen beiden Gruppen

RR: Visualisierung

NC D С Cluster a.b.c.d

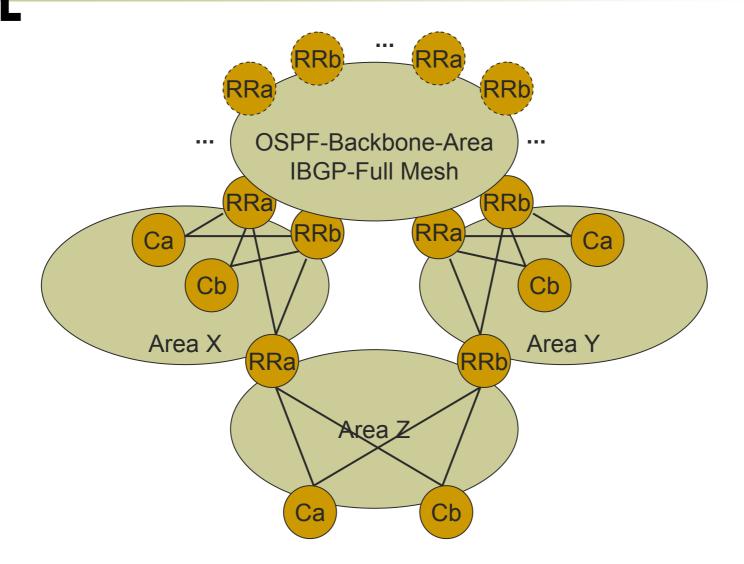
Isolierte Clients (Client-to-Client-Reflection)

Client-Full-Mesh

NC: non-client, C: client, RR: route reflector

RR: Bewertung

Vorteile


- Offene Erweiterung
- Transparent: nur RRs müssen die Erweiterung unterstüzen
- Schachtelung von Clustern möglich, Loop-Detection via CLUSTER_LIST
- Nachteile
 - Persistent Route Oscillation möglich
 - Transient Route Oscillation möglich

Status Quo Schlund: RRs

Schlund

- reduziert das Full-Mesh durch RRs von 25 auf 10 vollvermaschte Router (45 Sessions statt 300)
- nutzt homogene Strukturen in IGP und EGP
 - ABRs sind gleichzeitig RRs, fast überall redundant ausgelegt, sogar Hersteller-redundant
 - Router, die via virtuelle Links an die Backbone-Area angebunden sind, stellen zweite RR-Stufe dar

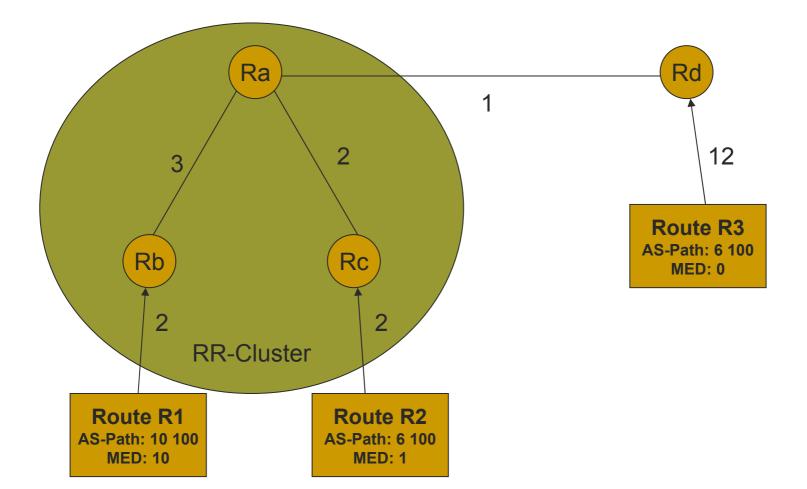
Status Quo Schlund: Visualisierung

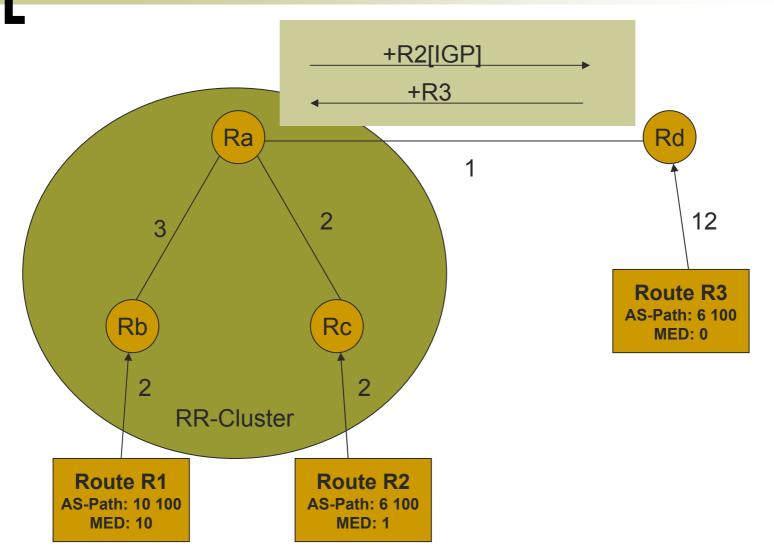
Neues Problem: Persistent Route Oscillation

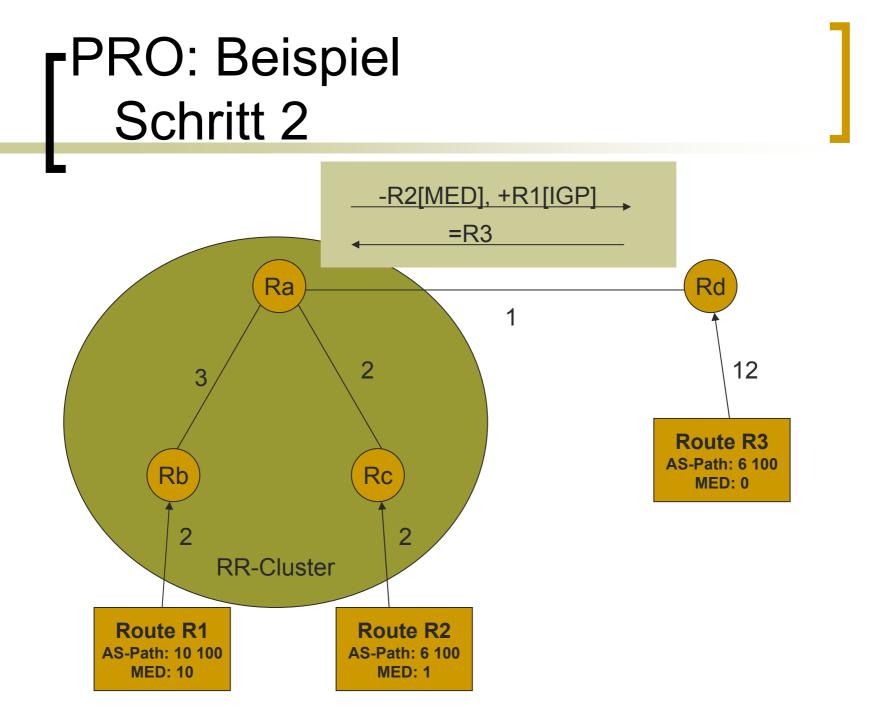
RRs und Confeds resultieren

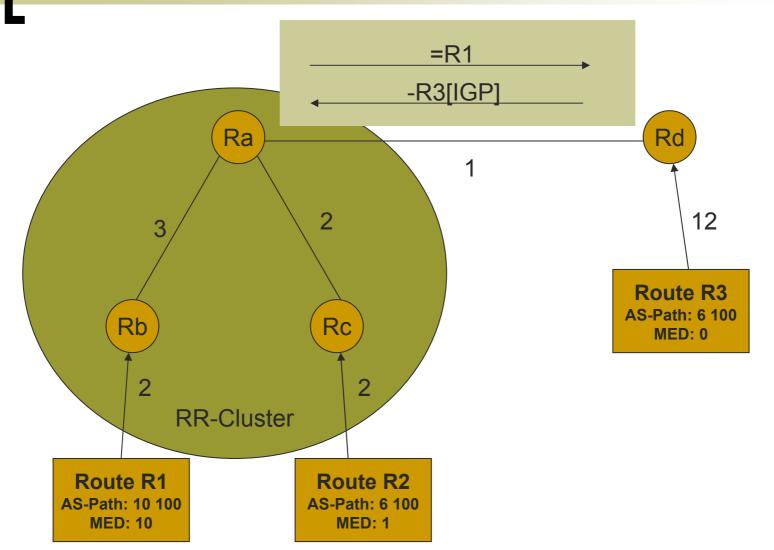
- o in einer Teilvermaschung
- in einer Einschränkung der Sicht von Routern außerhalb und sogar innerhalb eines Clusters
- Grund
 - RRs können nur eine aktive Route zu einem Ziel announcen (die zweite widerruft implizit die erste), dadurch Filterung von Routen durch RRs
 - Keine Vollordnung bzgl. MED

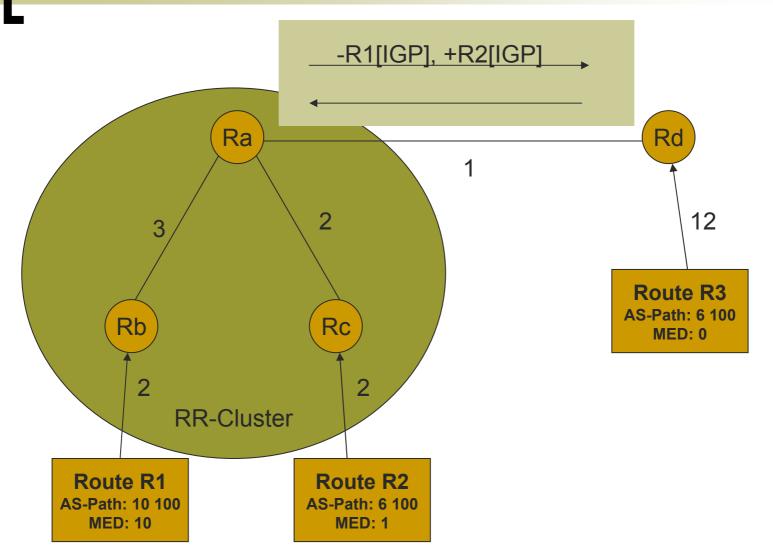
PRO: Ergebnis

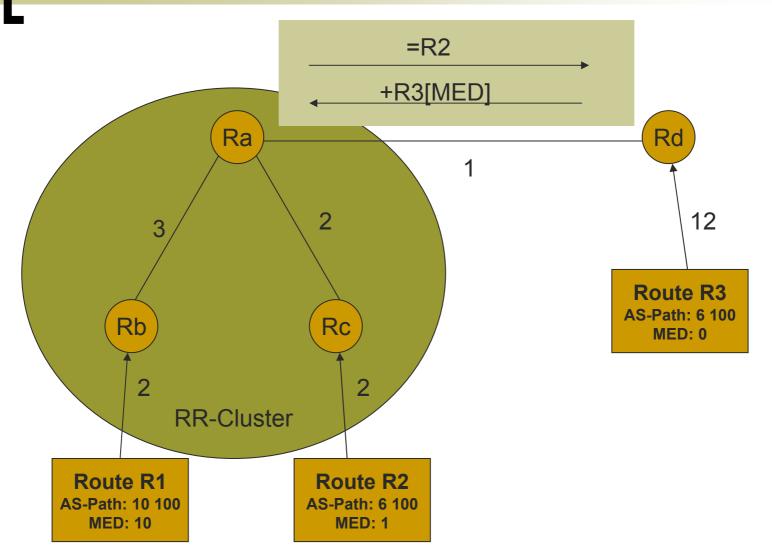

- Inkonsistente Zustände im Netz, die eine Konvergenz verhindern
 - Zyklische Abhängigkeiten zwischen Routen-Announcements verhindern Konvergenz
 - Bei Schlund: 5 Backbone-Router "bombadieren" sich gegenseitig mit >50 Updates pro Sekunde beim "Kampf" um zwei Präfixe
- Frage: Wie sieht so ein Zyklus aus und wie entsteht er ?


Recap: Routen-Selektion in BGP


Wesentliche Kriterien:


- Höchste LocalPreference
- Kürzester AS-Pfad
- Geringster MED
- EBGP vor IBGP
- Geringste Link-/IGP-Metric
- Niedrigste Router-ID


PRO: Beispiel-Szenario



Weitere Probleme

- [RFC 3345] beschreibt neben dem eben gezeigten PRO-Szenario noch ein weiteres.
- [RO] beschreibt zusätzlich zum gezeigten Szenario noch Szenarien, die nur temporäre Loops erzeugen, sog. *transient route* oscillations.

Lösungsansätze

- [RFC 3345] beschreibt PRO-Szenarien, als Lösungsansätze sind enthalten:
 - Intra-Cluster-IGP-Metriken >> Inter-Cluster-IGP-Metriken wählen, Analog bei Confeds
 - Keine MEDs verwenden
 - MEDs immer vergleichen (auch bei unterschiedlichen next-hop-ASen)
 - [Vollvermaschung einsetzen]
- alle Ansätze lösen zwar das Problem, "vergewalti-gen" aber die Netzadministration und/oder den BGP-Standard

Lösungsansätze – II

- In diversen Drafts/Papers (z.B. [PRO1, PRO2, RO] favorisierte Lösung:
 - Ändern des BGP-Standards, dass ein Router zu einem Ziel mehrere verschiedene Pfade announcen kann
 - RRs announcen alle Routen, die nach MED-Auswertung noch übrig sind [RO]
- Korrekte Lösung des Problems
 - → [RO] enthält Beweis (to be verified)
 - Bleibt die Frage nach Zeitpunkt der Umsetzung (vor allem in multi-Vendor-Netzwerken).

Status Quo Schlund

- Alle Router mit externen Anbindungen wurden wieder in das Full-Mesh aufgenommen
- Design-Prinzip-Bruch um Divergenz in Zukunft ausschließen zu können
- Warten auf Umsetzung von akzeptable Lösungen, z.B. [RO]

Fragen, Vorschläge, Anregungen?

Literatur

[BST] K. Poduri et al; NANOG 27: "BST – BGP Scalable Transport"; Februar 2003

- [RO] A.Basu et al; SIGCOMM 2002: "Route Oscillations with I-BGP with Route Reflection"; 2002
- [PRO1] John Scudder; NANOG 26: "BGP Route Oscillation Elimination"; October 2002
- [PRO2] Daniel Walton et al; Internet Draft "BGP Persistent Route Oscillation Solution"; May 2002
- [RFC 1142] D. Oran; "OSI IS-IS Intra-domain Routing Protocol"; Februar 1990
- [RFC 2328] J. Moy; "OSPF Version 2"; April 1998
- [RFC 2385] A. Heffernan; "Protection of BGP Sessions via the TCP MD5 Signature Option"; August 1998

Literatur – II

[RFC 2796] T. Bates;"BGP Route Reflection - An Alternative to Full Mesh IBGP"; April 2000

- [RFC 2960] R. Steward; "Stream Control Transmission Protocol"; October 2000
- [RFC 3065] P. Traina; "Autonomous System Confederations for BGP"; February 2001
- [RFC 3208] T. Speakman et al; "PGM Reliable Transport Protocol Specification"; December 2001
- [RFC 3345] D. McPherson et al; "Border Gateway Protocol (BGP) Persistent Route Oscillation Condition"; August 2002