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Abstract—This paper investigates the performance of BBRv3.
BBRv3 aims to achieve high throughput with low latency and
low packet loss rates. We evaluate BBRv3’s performance in a
Linux-based testbed and also identify and explain causes of the
observed behavior. In contrast to existing work, we investigate
BBRv3’s behavior at bottleneck data rates of 100 Mbit/s–10 Gbit/s
and delve deeper into the issue of self-induced queuing delay. We
also study the impact of delay jitter on performance. Moreover,
we investigate the performance of various concurrent short flows
taken from a real-world traffic trace. BBRv3 does not really
achieve its low delay goal: while it can limit queuing delay in
large buffers, it regularly adds 0.95 RTTmin queuing delay in
a single flow scenario and more than 1 RTTmin over 50% of
the time with multiple BBR flows (RTTmin: round-trip time
without queuing delay). We also observe fairness problems and
slow convergence that already existed with BBRv2. BBRv3 flows
are not strongly susceptible to delay jitter, although it adversely
affects queuing delay and fairness behavior to a certain degree
(but not starvation). In our experiments with short flows from
a real-world traffic trace, BBRv3 performs only slightly, but
consistently better than CUBIC.

Index Terms—Congestion control, BBRv3

I. INTRODUCTION

Distributed Congestion Control (CC) has been an active
area of research and development since its introduction in the
1980s. One driving factor for this continuity is that application
demands have changed over the years making short round-trip
times and low end-to-end delay crucial for application perfor-
mance, especially for interactive and transactional web traffic.
Traditional loss-based congestion control inherently creates self-
induced queuing delay that can lead to the Bufferbloat problem
[1] if large buffers are present at bottlenecks. Therefore, besides
using Active Queue Management (AQM) mechanisms in the
network, employing an improved CC is a further option to
control queuing delay. However, achieving high data rates
across a wide range of data rates while keeping queuing delay
low and achieving fairness (typically flow rate fairness) is a
very challenging task for congestion controls.

Introduced by Google in 2016, Bottleneck-Bandwidth and
Round-Trip Propagation Time (BBR) congestion control strives
to improve the performance of data transfer in the Internet. Its
main goal is to improve performance compared to current loss-
based congestion controls such as CUBIC TCP [2]. BBR aims

at high data rates in the presence of occasional packet losses
that are not caused by persistent congestion while keeping
the queuing delay low. The third version, BBRv3, seeks to
improve performance over the first two versions, which are
now considered obsolete [3]. It was recently adopted by IETF’s
CCWG [4] as a CC proposal and may well replace CUBIC as
the new Internet-wide CC standard.

Therefore, several groups have recently examined the per-
formance of BBRv3 [5]–[8]. However, most of them focus on
fairness issues and have not evaluated self-induced queuing
delay, except in a simulation [8] or for a single flow at 20 ms
round-trip time (RTT) [5]. The BBR specification [4] lists
achieving low delay as one of its major goals besides achieving
high throughput and low packet loss rates. Although modern
CCs for the Internet are expected to work over a broad range
of transmission data rates (up to hundreds of Gbit/s), none of
the above evaluations has used real Ethernet bottleneck links at
data rates above 1 Gbit/s. Similarly, no other evaluations have
investigated the impact of delay jitter on BBRv3’s performance
yet, although various jitter sources in the Internet exist and [9],
[10] suggest severe impacts for BBR.

In this paper we evaluate BBRv3’s behavior in a dedicated
testbed and systematically study various influences on its
performance. Moreover, we identify and explain the causes of
the behavior shown. The contributions of this paper include:

• First extensive investigation of BBRv3’s self-induced
queuing delay and explanation of its root causes (backed
by traces of BBR’s internal variables). One of BBR’s
major goals was to achieve low queuing delay and we
show that it systematically adds queuing delay in the order
of an RTT, even with a single flow (which BBRv1 did
not).

• First investigation of the influence of delay-jitter on
BBRv3’s performance and fairness since research [9],
[10] suggested that BBR is strongly susceptible to jitter.

• Comparison of different methods to generate application-
limited traffic from real-world traces and using them for
evaluation of BBRv3’s performance with short flows.

• Investigation of BBRv3’s behavior with bottleneck link
data rates ranging from 100 Mbit/s to 10 Gbit/s, whereas
other research mainly uses 100 Mbit/s or 1 Gbit/s at most.© IFIP 2025. This is the author’s version of the work. It is posted here by
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• The use of real hardware with Google’s reference Linux
implementation, i.e., no virtualization, no simulation,
or emulation. The experiments were repeated 30 times
(except for tests with real-world traffic) in a thoroughly
validated testbed.

Out of scope were evaluations using AQM and/or Explicit
Congestion Notification as well as experiments across the
Internet or with wireless links.

II. BBRV3 IN A NUTSHELL

In this section we give a brief overview of BBRv3. For
more details, the reader should refer to [4]. BBRv3 inherits
its core mechanisms from BBRv1 [11] and BBRv2. It can be
basically characterized as a rate-based CC that also controls
the amount of in-flight data according to an internal model of
the network path characteristics. A BBR sender uses paced
sending at the target rate that is calculated by the model. BBR’s
core feature is to let a flow sender estimate the Bandwidth
Delay Product (BDP), that is br · RTTmin , where br is the
current bottleneck bandwidth share and RTTmin the round-
trip time (RTT) without any queuing delay. BBR uses a
maximum filter of the delivery rate and RTT measurements to
estimate the BDP. A BBR flow is in one of the states StartUp ,
Drain, ProbeBW , or ProbeRTT (see Fig. 1). Measurements
for RTTmin are performed in the ProbeRTT state where BBR
senders reduce their in-flight data to 0.5 BDP to remove the
bottleneck queue. ProbeRTT starts if the RTTmin estimate has
not been updated for more than 5 s. This condition automatically
leads to a (self-)synchronized behavior of all BBR flows at the
bottleneck (at most 10 s after an individual flow started). The
so synchronized flows simultaneously execute ProbeRTT every
5 s thereby increasing the probability to actually emptying the
queue during this phase (i.e., a period in a certain state). BBR
leaves ProbeRTT after an RTT (or at least 200 ms) and enters
ProbeBW if it estimates that the bottleneck link capacity has
already been saturated or StartUp otherwise.

Steady State

Startup

Drain

Probe BW

Probe RTT

Down Cruise Refill Up

Fig. 1: BBR State Transition Diagram

A. Startup and Drain

A flow begins in StartUp and performs an exponential search
for the available capacity: it uses a pacing gain of 2.77 and
cwnd gain of 2. This means that its paced sending rate is
2.77 times higher than the current target rate and that the
allowed congestion window is doubled during startup. StartUp
is exited if one of two conditions is fulfilled: it has found a
“bandwidth plateau” or detected certain packet loss indicators.
A plateau is found if a less than 25% increase of the delivery
rate is detected for three round trips without application limits.

During StartUp a BBR sender may fill the bottleneck buffer
in case the bottleneck link capacity has been saturated in the
meantime. In order to quickly drain this excess data from the
bottleneck queue a BBR sender transitions to Drain that uses a
pacing gain of 0.35 to drain the queue in less than one round
trip. Drain is left when the amount of in-flight data is less than
or equal to the estimated BDP.

B. Steady State – ProbeBW

Long-lived flows spend most of their time in ProbeBW . It has
four sub-states: DOWN , CRUISE , REFILL , and UP (we omit
their name prefix ProbeBW for brevity). BBR cycles through
these sub-states to decrease, keep, or increase its sending rate
in order to either make room, to find a stable and fair operating
point, or to detect free capacity. Figure 2 shows an example
of a BBR flow in different phases over time.
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Fig. 2: Example of state transitions in different phases

UP probes for free capacity by setting the pacing gain to
1.25 and the cwnd gain to 2.25 (i.e., the allowed congestion
window is cwnd gain · estimated BDP). BBRv3 reacts to packet
loss ≥2% or ECN as congestion signals. Both signals set an
internal variable inflight longterm that denotes a long-term
maximum volume of in-flight data that creates “acceptable
queue pressure” [4]. The corresponding inflight shortterm
value is considered as safe lower bound. If inflight longterm
has not been set, the volume of in-flight data increases to
1.25 BDP, thereby risking to cause queuing delay or packet
loss. Otherwise, BBR increases inflight longterm by adding an
amount that is doubled each round trip. So, it starts slowly to
increase the limit but then grows rapidly to be able to quickly
utilize newly available bandwidth in networks with large BDPs.
UP is exited if it determines that the flow has saturated the
available bandwidth and reached a bandwidth plateau or that
the packet loss within the last round trip has exceeded the 2%
limit. BBR then enters the DOWN phase to reduce the queued
data.

DOWN pursues a deceleration tactic using a pacing gain
of 0.9. DOWN is exited when there is “free headroom” or the
volume of in-flight data is less than or equal to an estimated
BDP. The headroom condition tries to leave free capacity for
other flows (e.g., those newly starting or those trying to increase
their share) by stopping at 0.85·inflight longterm, if the latter
is set.

In CRUISE , BBR uses a pacing gain of 1.0 to send data
at the same rate the network is delivering data. In this state,
it responds more sensitively to packet loss events (not only



beyond 2%), because the available bandwidth may have been
reduced. Figure 2 shows an example of BBR’s reaction to loss
events during CRUISE as indicated by the two red cross marks.
BBR reacts by adapting its bandwidth and inflight shortterm
estimates, e.g., by reducing them to 0.7 of their previous values.

BBR transitions from CRUISE to REFILL to begin probing
for bandwidth after some calculated period that also considers
the potential coexistence of CUBIC and Reno flows. In
REFILL , BBR tries to fully utilize the bottleneck link without
creating “queue pressure” by sending with pacing gain = 1.0
for a round trip, after which it transitions to UP .

Major changes in BBRv3 addressed bandwidth and fairness
convergence issues [3]. For example, the changes concerned
exiting UP too early when limited by inflight longterm as well
as tuning parameter values for cwnd gain in UP , DOWN , and
for the Startup phase.

III. TESTBED SETUP AND MEASUREMENT METHODOLOGY

In order to investigate the various performance aspects
of BBRv3, especially at higher data rates beyond 1 Gbit/s
bottleneck capacity, we set up a dedicated testbed (see Fig. 3).
It allows to create different scenarios with varied RTTs and
bottleneck link data rates in a controlled environment.

It consists of four Linux servers. Two servers are used as
senders, one is used as (software-based) router and one as
receiver. A software-based router allows one to flexibly create
bottleneck link rate limits, artificial delay, different delay jitter
patterns, and packet loss patterns. Moreover, it allows for
detailed measurements of the bottleneck queue length. For
data rates up to 1 Gbit/s, we use dedicated Ethernet links to a
hardware switch (MikroTik CRS354-48G-4S+2Q+, not shown
in Fig. 3) with VLANs to flexibly interconnect the servers. For
higher data rates, dedicated and directly connected cables with
10 Gbit/s were used because there was no hardware switch.
We carefully validated the testbed so that neither the hardware
switch nor the router caused any side effects that noticeably
impact the measurement results (more details below).

Sender 1
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fq

fq Receiver
fqdelay

SW-based
Router

limit

delay
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ack

Bottleneck link
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Queuing delay
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Fig. 3: Testbed setup

A. Used Hardware

Each server has two Intel Xeon Silver 4110 CPUs (2.1 GHz,
8 cores, 16 threads) and 96 GiB of RAM installed, split at half
to every CPU’s NUMA node. The servers have a dedicated
management network interface card (NIC) on board and possess
an Intel I350 NIC with four ports used for experiments with up

to 1 Gbit/s as well as an Intel X550T NIC with two ports used
for experiments at 10 Gbit/s. The bottleneck router has two
X550T NICs installed to support the three required 10 Gbit/s
links. Ethernet Flow Control was disabled.

B. Used Software

The servers run Ubuntu Server 22.04.4 LTS. The BBRv3
kernel1 at commit 7542cc7 (kernel 6.4.0) is installed on the
end systems. Segmentation offloading is enabled on the end
systems. The maximum read buffer size is set to 500 MBytes
and the maximum write buffer size to 1000 MBytes. The RX
ring size at the receiver was increased from its default value of
512 to 32768 to prevent packet loss at data rates of 10 Gbit/s.
Furthermore, we used the fq queuing discipline at the end
systems as indicated in Fig. 3 to support the more efficient
pacing required by BBR. Without fq, BBR employs an internal
pacing that uses a per-socket high resolution timer. This is less
precise and more resource intensive, especially if many flows
need to be transmitted.

C. Bottleneck Router Setup

The software-based bottleneck router uses regular Linux
Kernel packet forwarding for data rates up to 1 Gbit/s. Up
to these speeds, NetEm is used to limit the bottleneck link
rate or to create packet loss (see ‘limit’ box in Fig. 3)
and to add artificial delay (‘delay’ boxes) in the reverse
direction for ACK packets. Delaying ACKs is less resource
intensive than delaying data packets, thus avoiding adverse
side effects at high data rates. For data rates beyond 1 Gbit/s
we implemented a simple XDP-based router since we detected
occasional (but reproducible) packet losses with standard
Linux Kernel forwarding. Since these packet losses would
be absent with a properly dimensioned hardware router, we
wanted to exclude them as they clearly showed an impact on
fairness and convergence to fairness. Queuing and delaying
were implemented in user space with AF XDP, because XDP
alone cannot provide these functions. In addition, interrupts
were pinned to a single NUMA node and to dedicated cores
to improve throughput and minimize jitter. We also disabled
CPU frequency scaling to prevent noise in the effective RTT
observed at 10 Gbit/s. Moreover, receive side scaling, GRO
(Generic Receive Offload), and Adaptive Interrupt Coalescence
were disabled to improve performance at high data rates and
let it more behave like a hardware router.

D. Measurement Methodology

To measure the state of individual TCP connections, TCP-
Log2 is used at the senders (at the default measurement
rate of 10 Hz). TCPLog tracks the goodput, the RTT, the
congestion window, and amount of data transferred over time.
It uses the tcpinfo socket diagnostics feature to expose TCP
information to user space over a netlink socket. We extended
TCPLog to also report the internal variables of BBR. The
evaluation uses CPUnetLOG [12] on all servers to measure

1https://github.com/google/bbr/tree/v3
2https://gitlab.kit.edu/kit/tm/telematics/congestion-control/logging/tcplog



the throughput on each NIC used in the experiment and CPU
usage to identify processing bottlenecks (measurement rate
10 Hz). Using CPUnetLOG at the receiver is important to rule
out any processing bottlenecks on this end caused by CPU
load. This is especially important for short flow experiments,
where both senders have to handle a potentially large number
of open connections (see Section VI).

To measure the queuing delay, the amount of data and the
number of frames in the bottleneck queue are captured with
10 Hz at the bottleneck router using the output of tc (used
in batch mode to avoid spawning lots of processes) with a
timestamp for each sample. When the XDP router is used, the
current buffer occupancy stored in a shared memory segment
is sampled at 10 Hz and time-stamped by a separate program.
The amount of data is then divided by the actual bottleneck
bandwidth to calculate the queuing delay. All experiments
were repeated 30 times and lasted 60 s (except for tests with
real-world traffic).

IV. SELF-INDUCED QUEUING DELAY

A major goal of BBRv3 is to achieve “low queue pressure”,
which is defined as low queuing delay and low packet loss
[4, Sec. 3.1]. BBR’s design aims to fill the queue only
during startup and the UP phases and to converge “with high
probability to Kleinrock’s optimal operating point” [11]. We
investigate how low the queuing delay that BBRv3 creates
actually is and we also explain the causes of the observed
behavior. BBR flows that share the same bottleneck with
other delay-sensitive flows (e.g., those from highly interactive
applications such as multiplayer online games) may noticeably
affect the latter. For example, a BBR flow with an RTT of
100 ms can create queuing delay of this order, disturbing the
concurrent flows because they also suffer from this flow’s
self-induced queuing delay (unless AQM is used).

A. Queuing Delay caused by a Single Flow

In contrast to BBRv1, even a single BBRv3 flow creates a
non-negligible Queuing Delay (QD) with higher peaks. There
are several causes that contribute to the creation of QD in this
case:

1) One cause is the UP phase that increases the amount of
queued data at the bottleneck over the duration of three
round trips in many situations.

2) Another cause is that BBR sometimes overestimates the
available bandwidth because its bandwidth estimator
is susceptible to measurement noise. This causes a
queue to build even during the CRUISE phase that
should conceptually not increase “queue pressure” [4,
Sec. 4.3.3.2].

1) 1st Cause – UP Phase: In order to illustrate the first
cause, we calculate the maximum QD produced by a single
application-unlimited flow (i.e., the application always has a
packet to transmit) after starting. BBR’s pacing gain during
UP is 1.25. The UP phase lasts three round trips if no loss
signals occur. Assuming that BBR measures the bandwidth
without error, the resulting QD corresponds to a quarter of the

duration of the UP phase. When calculating the total duration
of these three round trips, one must consider that the duration
of a round trip is extended by QD produced in previous UP
round trips. Therefore, the QD (in RTTmin ) generated in
all three round trips is calculated as: (1.25)3 − 1 ≈ 0.95.
The QD takes 0.95RTTmin/0.25 = 3.8 RTTmin to build
up. Then, this queue is drained in the DOWN phase using
a pacing gain of 0.90. Therefore, the QD disappears after
0.95 RTTmin/0.10 = 9.5 RTTmin .

Figure 4 clearly shows the effect at 50 ms RTTmin and the
rate limit of 100 Mbit/s with the corresponding delay peaks
(REFILL and UP phases are highlighted by vertical lines). In
contrast, BBRv1 caused only a maximum QD of 0.25RTTmin

(indicated by the red horizontal line) in its ProbeBW phase
for a short period of time (< RTTmin ) for a single flow.

In Fig. 5 one can see the differences between BBRv3
(dashed lines) and BBRv1 (solid lines) quite clearly (for
RTTmin=50 ms and different bottleneck bandwidths): although
in 70–80% of the cases the QD is similar between BBRv3
and BBRv1, BBRv3 achieves much higher peak QD values
whereas BBRv1 is limited to around 0.25–0.3RTTmin .
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2) 2nd Cause – Bandwidth Overestimation: BBR sometimes
overestimates bandwidth due to jitter, introduced by the
bottleneck or end systems, which causes noise in the delivery
rate samples. The maximum filter used by BBR’s bandwidth
estimator is sensitive to jitter, overestimating bandwidth in this
case. For previous versions of BBR, this problem is discussed in
the context of ACK aggregation rather than jitter [13]. BBR uses



a fixed margin of 1% to calculate the target pacing rate from
the estimated bandwidth. When the bandwidth is overestimated
by more than 1%, the pacing rate is higher than the bottleneck
bandwidth in the CRUISE phase, so the bottleneck queue
builds up during this phase. When the pacing rate is just a
little above the actual bottleneck bandwidth, the queue builds
up slowly until the pacing gain is reduced by the ProbeRTT or
DOWN phase. Otherwise, the build-up of the queue is stopped
by the congestion window.

This effect is illustrated by plotting BBR’s bandwidth
estimate (BBR BW) and the QD of a single run in Fig. 6a.
The effect is well visible during certain time spans that are
highlighted in light gray (where BBR BW is above the red
horizontal line). Within these spans, the QD starts to build up
in CRUISE , i.e., even before the start of UP shown as a vertical
line. This effect is stronger when the RTT is low because there
are more delivery rate samples in this case. With 1 Gbit/s, this
effect permanently produces a QD during CRUISE as shown
in Fig. 6b.
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This effect is easily achieved in practice, e.g., for a single
flow with RTTmin =10 ms a jitter of 1 ms triggers the
overestimation, so that a QD >10 ms occurs for bottleneck
bandwidths of 500 Mbit/s and above. The CDF in Fig. 7
confirms this and shows that BBRv3 has basically more
difficulties in limiting QD at higher data rates and lower RTTs
due to the jitter sensitivity of BBR’s bandwidth estimator.
The flows with 500 Mbit/s and RTTs of 10 and 20 ms cause
consistently higher QD than the flows at 100 Mbit/s and/or
50 ms RTT.
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Takeaways: BBRv3 can create a significant queuing delay
around one RTTmin even for a single flow. A flow with smaller
RTT and higher bandwidth typically creates higher queuing
delay because BBR’s bandwidth estimator is sensitive to jitter
that occurs more often in these constellations.

B. Queuing Delay caused by Multiple Flows

Multiple application-unlimited BBR flows systematically
produce an RTTmin -dependent queuing delay that is mainly
caused by an overestimation of the available bandwidth. This
behavior is inherent and present since BBRv1 [14]. The
reason is that each flow outperforms the others in its UP
phase. Assuming the correct estimates of bandwidth shares,
the bottleneck queue will build up when a flow enters UP ,
temporarily decreasing the share of the other flows, because
some of their packets will be queued instead of forwarded
directly. However, the flow in UP can actually increase its
bandwidth share by reducing the share of the other flows. As
the bandwidth estimate uses a maximum filter, multiple flows
estimate their own bandwidth share based on the sample from
their respective UP phase. Therefore, the sum of these estimates
can be larger than the available bottleneck bandwidth. Similarly
to experiments with single flows, overestimating the bandwidth
leads to the build-up of the bottleneck queue, limited to the
BDP-dependent congestion window set by BBR.

The QD measured for two flows at different data rates, RTTs,
and buffer sizes is shown in Fig. 8. We chose buffer sizes of 0.8,
1, 2, and 8 BDP. 0.8 BDP is a buffer size that is smaller than the
rule-of-thumb size of 1 BDP that is considered optimal for most
loss-based CCs. The first version of BBR had problems with
size 0.8 BDP [14]. 2 BDP is a size that BBR typically utilizes
to some extent but rarely exceeds, while 8 BDP is considered
to be a “deep buffer” size that would lead to bufferbloat with
loss-based CCs. The boxplot shows the distribution of QD
(in RTTmin ) over time using 30 measurements of 1 min each
(each box: central mark = median, bottom and top box edges =
25th and 75th percentiles, respectively; whiskers are at points
that lie within 1.5× the inter-quartile range from bottom and
top edges).

After the startup phase, the QD does not shift over time, so
the samples mostly represent the steady state. With a buffer
limit of 8 BDP, BBR generates QD that exceeds 1.5RTTmin

temporarily, irrespectively of the data rate and the RTT. A QD



of 2RTTmin is only exceeded by outliers. For both 2 BDP
and 8 BDP, the median QD exceeds 1.0RTTmin . In contrast,
BBR hits the buffer limit regularly when it is set to 0.8 BDP
or 1.0 BDP, resulting in packet loss of up to 0.6%. With a
data rate of 10 Gbit/s, the receiver’s performance seems to be
impacted by packet loss, leading to a throughput reduction of
up to 1.6% and, in turn, an empty queue for a larger fraction
of the time. In configurations where this effect does not occur,
the median QD exceeds 0.4RTTmin with 0.8 BDP buffer limit
and 0.5 RTTmin with 1.0 BDP buffer limit.
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Fig. 8: Queuing Delay (in [RTTmin ]) caused by two flows at
varying data rates, RTTs, and buffer sizes (in [BDP])

The queuing delay when increasing the number of flows is
shown in Fig. 9 (buffer size is 8 BDP). These results confirm
that QD rises with an increasing number of flows, caused by
increased bandwidth overestimation. For 100 Mbit/s and 10 ms
RTTmin , the QD nearly doubles when increasing the number
of flows from 16 to 32, despite no such observable change
in the sum of bandwidth estimates, or in the RTTmin values.
Therefore, this effect is not caused by the BDP estimation.

Instead, it must be caused by one of the other mechanisms
that increase the congestion window, extra acked or offload
budget [4, Sec. 4.5.8–9]. Extra acked increases the congestion
window to accommodate jitter. The offload budget estimates the
minimum volume of data necessary to achieve full throughput
when using host offload mechanisms (e.g., TCP Segment
Offload, GRO). It is constant during all measurements and
accommodates segments that have yet to be reassembled by
segmentation offload, for example. The affected configuration
has the lowest per-flow BDP, so any constant amount that is
added to the congestion window has the highest relative impact.
To evaluate both mechanisms separately, this run (100 Mbit/s,
10 ms, 32 flows) was tested with a modified BBR version that
disabled extra acked or the offload budget. With disabled offload
budget, the median QD is reduced to 3.67RTTmin . Disabling
the extra acked mechanism reduced it to 2.73RTTmin .

When some of the flows start with a delay, additional QD
is produced because the BDP is overestimated. This effect
is shown in Fig. 10 for RTTmin = 10 ms as an example,
plotting the QD quartiles of 30 measurements for each point
in time. In any case, this effect is caused by the maximum
filter that considers the last 5 s. Therefore, the bandwidth
estimate of the early flow that backs off lags behind. This
is shown for three consecutive runs in Fig. 11. The bottom
row shows BBR’s bandwidth estimate (BBR BW) for each
flow, whereas the top row shows their sum (BBW BW Sum)
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Fig. 9: Queuing Delay with multiple flows (buffer size = 8 BDP)

and the middle row shows the goodput of each flow. Although
the goodput of the early flow drops instantly when the late
flow starts, its bandwidth estimate (BBR BW) is not reduced
at that point, leading to an increased sum of estimates (BBR
BW Sum). Other reasons may increase the BDP estimate
even more. Moreover, late flows do not participate in the first
ProbeRTT phase. If a late flow enters UP instead during the
ProbeRTT phase of the other flow, it increases its bandwidth
estimate considerably without decreasing the bandwidth (and
the corresponding estimate) of the early flow. This is visible
in the third run of Fig. 11. Furthermore, QD produced by
early flows increases the RTTmin estimate of late flows until
ProbeRTT .
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Fig. 10: Queuing Delay without and with delayed start (of 1 s
or 2 s), note that the y-axis starts at 0.9RTTmin

Takeaways: With multiple flows at the bottleneck, BBRv3
creates RTT-dependent queuing delay around 1RTTmin in
larger buffers (≥ 2BDP) often for more than 50% of the
time. Moreover, the QD increases with an increasing number
of flows at the bottleneck. The main reason is the common
overestimation of the available bandwidth, especially during
the UP phases, but there are further mechanisms that may
additionally aggravate the QD.

V. FAIRNESS – THE IMPACT OF JITTER

Existing work shows that latecomer unfairness, RTT unfair-
ness, and inter-protocol unfairness also apply to BBRv3 [6].
While these kinds of unfairness showed also up in our
measurements we investigate the impact of jitter on BBR’s
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Fig. 11: Queuing Delay caused by bandwidth overestimation
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fairness. Jitter occurs naturally in networks at different time
scales. There are several sources of non-congestive delay that
contribute to perceivable jitter in the range of a few up to tens
of milliseconds. Examples for such sources comprise delayed
ACKs, ACK aggregation, end-host or in-network scheduling
and delays at the physical and MAC layers. For the latter,
especially access to a shared medium (e.g., broadband cable
or wireless media such as Wi-Fi) causes perceivable jitter.

Claims that BBR is sensitive to jitter, possibly causing total
starvation [9] were never experimentally evaluated. In addition,
[9] evaluates an older version of BBR, although the mechanisms
discussed are still present in the current version. Therefore, the
impact of jitter is interesting to evaluate experimentally.

The experiments use two flows with RTTmin=10 ms. For
one of them, non-reordering jitter (always ≥ 0) is added. Both
per-packet and slotted jitter are evaluated. In per-packet jitter,
the delay is chosen independently for each packet. To prevent
reordering, packets are at least delayed until all preceding
packets are sent. In slotted jitter, the delay is chosen at the
beginning of a new slot. Packets that arrive when the slot starts
or is still used by preceding packets are appended to the slot
immediately. The slot ends when it runs out of packets. Slotted
jitter is more realistic because it resembles the behavior of
media access or ACK aggregation.

Because NetEm cannot reliably handle 10 Gbit/s with multi-
ple senders and our simple XDP router implementation does not
support adding artificial jitter, only bandwidths of 100 Mbit/s
and 1 Gbit/s were evaluated.

The results are shown in Table I as ratios between the jitter
and non-jitter flows. It is observed that the flow without jitter
prevails (ratio <0.5) in all configurations with buffer sizes of
0.8 BDP and 1.0 BDP. This is caused by BBR’s reaction to
packet loss that reduces the congestion window. The congestion
window needs to accommodate jitter, so this reaction affects
flows that experience more jitter. As expected, this effect is
noticeably stronger with higher jitter. The results do not differ
clearly between the buffer sizes 0.8 BDP and 1.0 BDP.

With 8 BDP, the results differ by the type of jitter. For per-
packet jitter, the flow without jitter prevails. The reason is the
underestimation of extra acked, and, in turn, the congestion

TABLE I: Ratio of transferred data (fair = 0.5) in the last 30 s
of a BBR flow with the specified jitter to a concurrent BBR
flow without jitter (both RTTmin =10 ms), median of 30 runs

Buffer
Size

slotted jitter per-packet jitter
Link rate Link rate

100 Mbit/s 1 Gbit/s 100 Mbit/s 1 Gbit/s
Jitter [ms] Jitter [ms] Jitter [ms] Jitter [ms]

10 20 40 10 20 40 10 20 40 10 20 40
0.8 BDP 0.43 0.35 0.27 0.32 0.21 0.13 0.44 0.39 0.24 0.41 0.23 0.09
1.0 BDP 0.44 0.36 0.28 0.34 0.24 0.13 0.45 0.38 0.27 0.36 0.22 0.10
2.0 BDP 0.56 0.47 0.36 0.64 0.49 0.32 0.46 0.36 0.26 0.39 0.22 0.12
8.0 BDP 0.71 0.77 0.77 0.68 0.68 0.65 0.46 0.32 0.27 0.39 0.24 0.14

window. With two flows, this leads to occupation of a smaller
part of the bottleneck queue, which in turn reduces the
bandwidth. The expected extra acked value in MSS depends
on the bandwidth reached. For easier reasoning, BBR Jitter is
calculated as the ratio of BBR’s extra acked value in MSS and
the smoothed goodput in Mbit/s. The MSS is constant, so the
resulting unit of MSS

Mbit/s can be converted to units of ms. As
an example, one can look at the configuration with 1 Gbit/s
and 20 ms jitter shown in Fig. 12. The estimated jitter only
reaches 10 ms, despite of 20 ms per-packet jitter actually added
at the bottleneck. Therefore, extra acked underestimation with
per-packet jitter is confirmed.

In contrast, a flow with slotted jitter prevails regardless of
RTTmin or the bottleneck bandwidth, as long as the buffer size
is set to 8.0 BDP. For slotted jitter, BBR’s jitter estimate matches
the configured value (see right part of Fig. 12). Therefore, the
congestion window is correctly calculated. The bandwidth gain
is caused by an increase in round-trip times due to slotted jitter,
leading to the known RTT unfairness. With a buffer size of
2 BDP and slotted jitter, the result depends on the configured
jitter. With 10 ms jitter, the flow with jitter prevails, which
is the result of bandwidth overestimation. With higher jitter
values, the flow without jitter prevails due to an insufficient
congestion window. As expected, this effect is stronger for
higher jitter values, just as with buffer sizes of 0.8 BDP and
1.0 BDP.
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Fig. 12: Jitter estimated by BBR, ten consecutive runs of 60 s
each, buffer size = 8 BDP, two flows with RTTmin=10 ms,
one with artificially added jitter of 10, 20, or 40 ms

Takeaways: The concept of ‘non-deterministic jitter’ [9]
is rather broad and although both jitter models match the



definition of ‘non-deterministic jitter’, the results between
them differed significantly. Jitter impacts BBR’s fairness and
unfairness increases with higher jitter and higher data rates.
Even when considering less realistic artificial jitter models,
total starvation as indicated by [9] was not observed. Instead,
the resulting impact results from differences in measured RTTs
caused by jitter, resulting in RTT-based unfairness.

VI. PERFORMANCE FOR SHORT FLOWS WITH
REAL-WORLD TRAFFIC

The evaluations in the previous sections used continuous
application-unlimited flows. In this case, the sender application
sends new data continuously. In contrast, a short flow only
sends a limited amount of data and then terminates, which is
true for most Web traffic flows.

To evaluate CC with short flows, the load generator needs a
model to open new flows and send data. The results on CC
performance are expected to be more applicable to the real
world if this model is closer to real-world flows. To get a diverse
set of real-world flows, a packet capture of an Internet backbone
router is used: MAWI 2020/06/10 [15] (also used in [16]). We
derive three different configurations from this trace as follows.
First, the capture is divided into individual unidirectional flows
according to the addresses and ports. Second, each flow is
optionally split into multiple contiguous transmission chunks
that are separated by transmission pauses. Our chosen split
policy ignores pauses shorter than a threshold, so that a new
chunk starts when no data is sent for at least 100 ms. For
each transmission chunk, the amount of data transferred is
summed up until the next pause threshold. In addition, the
pause duration before each chunk is analyzed.

In the Replay configuration, the transmission chunks and
pauses are replayed as determined by the split policy. In the
Collapsed configuration, each flow is represented as a single
contiguous transmission, skipping pauses between transmission
chunks in a single flow. The Synthetic configuration recreates
the traffic pattern used in previous work by drawing the inter-
arrival time and the data amount independently, based on the
Collapsed configuration [16]. A closer analysis showed that
the Synthetic configuration eliminates some burstiness that is
preserved in the Collapsed configuration. The resulting chunk
size distributions of the MAWI trace with and without splitting
(then the size of the single chunk corresponds to the flow size)
can be seen in Fig. 13. Although only 10% of the flows are
larger than 18.2 kBytes, 90% of the transmitted data belongs
to flows larger than 6.4 MBytes and 50% of the transmitted
data belongs to flows larger than 280.7 MBytes.

As the MAWI packet capture has a duration of 15 minutes,
each run of one of those models also takes 15 minutes.
Flows from the trace are assigned to both senders in a round-
robin fashion and CPUnetLOG showed no CPU limitations.
Experiments are carried out with a bottleneck bandwidth of
3 Gbit/s (using NetEm and verified absence of packet loss due
to exceeding the buffer), which is significantly higher than
needed to transfer the total data amount of the model for the
total duration of the run (≈ 1.25 Gbit/s), so it is expected that
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Fig. 13: Cumulative Distribution Function (CDF) of transmis-
sion chunk sizes from the MAWI trace [15]

there is enough headroom for transmissions to complete before
other transmissions start. Moreover, 3 Gbit/s produces enough
congestion to show different results for CC behavior, providing
meaningful results. With RTTmin = 10ms, around 170 flows
were concurrently active at the maximum. Figure 14 shows
the average slowdown values (i.e., normalized flow completion
time [16]) to transmit flows from the MAWI trace using
BBRv3, CUBIC, and a theoretical SRPT (Shortest Remaining
Processing Time) scheduler. The latter knows the flow sizes a
priori and has been shown to deliver near-optimal performance
[16].

BBR shows consistently slightly lower average slowdown
values than CUBIC for all different RTTs and configurations.
This results from the shorter queuing delay that BBR produces
when the link is congested, compared to CUBIC. This behavior
is shown in Fig. 15 where the CDF for QD is shown for BBRv3
and CUBIC. Because only some flows experience congestion,
the CDF starts at 0.65 on the Y-axis to show the relevant
part. In Fig. 15a an increased slope in the range of 1 BDP
to 1.5 BDP is visible, caused by BBR’s congestion window
limitation of 2 BDP. This effect shows that the BDP estimation
works in some cases. However, in the long tail up to the limit
of 8 BDP, BBR probably overestimates the BDP, for example,
by short-lived flows that have not yet passed a ProbeRTT
phase. The CDF for CUBIC in Fig. 15b does not show these
pronounced differences, i.e., the QD is more evenly distributed
during congestion.

Takeaways: For short flows, BBR achieves only a slightly
lower average slowdown than CUBIC, but it does so consis-
tently for all different RTTs and configurations. This is the
result of BBR’s design goal of avoiding completely filling deep
buffers.

VII. CONCLUSIONS

One of BBR’s original goals was to reduce queuing delay
and to achieve “low delay” is still stated as an objective. Our
evaluation showed that a single BBRv3 flow creates higher
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Fig. 15: CDF for relative Queuing Delay in RTTmin

self-induced queuing delay peaks than BBRv1. We regularly
saw a queuing delay of 0.95RTTmin . This results from the
UP phase and bandwidth overestimation that is exacerbated
by jitter in the network. The latter occurs naturally at higher
data rates and lower RTTs resulting in persistently perceivable
queuing delay.

The inherent problem of BBR of overestimating the bottle-
neck bandwidth with multiple flows due to its maximum filter
for estimation of the delivery rate in its UP phases still exists
in BBRv3. We identified the ‘extra acked’ and ’offload budget’
mechanisms as further contributors to queuing delay. Queuing

delay greater than 1RTTmin occurs in more than 50% of the
time with two flows for all tested RTTmin values. Flows with
high RTTmin especially negatively affect interactive flows
that share the bottleneck.

BBR’s fundamental fairness problems still exist in BBRv3:
unfairness against CUBIC flows in shallow buffers and un-
fairness against short RTT BBRv3 flows as well as latecomer
disadvantages. Our experiments to investigate the impact of
additional jitter showed that BBRv3 is not strongly susceptible
to delay jitter as suggested by [9]. However, jitter adversely
affects fairness because of an insufficiently large congestion
window.

Results for short flows taken from a real-world trace showed
that the slowdown for BBRv3 is better than for CUBIC, but
RTT unfairness can also be observed in these cases. Basically,
BBRv3 works reasonably well across the tested data rate ranges,
but there is still room to improve BBR, especially with respect
to reducing queuing delay and convergence to fairness.
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