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Abstract—Link capacities increase at an enormous pace, with
100 Gbit/s becoming standard in data centers, campus networks,
and the Internet. These ever increasing data rates are challenging
since end-system performance (esp. CPU performance) cannot
keep up with the growth rates.

Still, the TCP protocol and today’s hardware are capable
of transferring 100 Gbit/s with a single sender/receiver pair.
However, extensive tuning is necessary down to manual interrupt
configuration and corresponding CPU core pinning for the
applications. A major issue is packet loss within the receiving end-
system that cannot be prevented by TCP’s flow control. This, in
turn, affects TCP’s default congestion control that interprets the
losses as congestion signal. In this paper we show how to tune
end-systems that are driven at their performance limits, what
data rates are feasible, where the limitations are, and discuss the
impact on and by TCP’s congestion control.

I. INTRODUCTION

Data transmissions at 100 Gbit/s are a challenge, but yet
achievable even with commodity server hardware. 100-gigabit
Ethernet devices are becoming available at reasonable costs and
can be installed in regular end-systems. In this paper we address
the questions where the performance limits of off-the-shelf
servers are, which tuning is necessary to achieve 100 Gbit/s and
we discuss the impact on and by congestion control. Supporting
such speeds up to the end-systems is relevant, e.g., for the
transfer of scientific data between locations or other large data
transfers. The knowledge where the limitations of commodity
end-systems are is also relevant for network expansions and
for the planning which connection options should be provided
in university or commercial data centers.

Congestion control has to dynamically detect the network
capacity and to limit senders in order to keep the network
from severe overload. Ever increasing data rates pose a
particular challenge: The range of possible network capacities
has increased tremendously over the years, which requires
an enormous scalability of congestion control algorithms. At
the start-up of a new connection it is completely open what
a suitable sending rate in the current context would be, e.g.,
1 kbit/s or 100 Gbit/s. For very high speeds, a capacity seeking
sender must quickly increase its sending rate to make efficient
use of the available bandwidth. Similarly, the reaction to (non-
congestion related) packet loss can be quite strong, so that
capacity is also wasted by the back-off and subsequent ramp-up
phase, leading to inefficient utilization of the capacity [2]. In
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Fig. 1: 100 Gbit/s with single sender/receiver pair; 3 flows

addition to that, new challenges can be observed if the end-
systems are driven at their performance limit. This includes
non-congestion related packet losses in the end-systems, as we
will detail within this paper.

Commodity servers are often powered by multi-socket, multi-
core CPUs at comparatively low clock speeds. A common setup
would be for example: Two Intel Xeon CPUs, each with 10
physical cores at 2.20 GHz interconnected over Intel’s Quick-
Path Interconnect (QPI). In conjunction with hyperthreading
this makes a total of 40 logical low-speed cores. Such a setup
is common today but has distinctive limitations with respect
to high-speed data transmissions and requires special tuning
that considers specifics of the hardware and the setup.

This paper makes the following contributions:
• We show that 100 Gbit/s can actually be achieved between

a single sender and a single receiver with existing hard-
ware. For this we equipped non-cutting-edge mid-range
server systems from the year 2014 with 100 Gbit/s network
interface cards (NICs) and tuned them extensively.

• We give detailed tuning instructions to drive these systems
to their performance limits and show that multi-socket
systems require particular attention.

• We discuss demands for future high-speed congestion
controls.

Hereby, we focus on commodity servers with 100-gigabit
Ethernet devices, high performance computing (HPC) clusters
with Infiniband networking are out of scope of our research.
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Fig. 2: Minimalistic testbed setup; no congestion

The remainder of the paper is structured as follows. Section II
shows the capabilities and limitations of carefully tuned end-
systems. The tuning is detailed in Section III. For end-systems
driven at their performance limits, packet loss within the end-
systems becomes relevant. Section IV gives background how
this happens and why this cannot be prevented by TCP flow
control. Section V discusses how these packet losses affect the
congestion control performance and shows promising mitigation
approaches. Related work is discussed in Section VI.

II. CAPABILITIES AND LIMITATIONS

Parallelism does not come naturally to network transmissions.
Consider a simple network interface card (NIC) with a single
interrupt line that is triggered when data arrives. In this
case all interrupts have to be handled by a single CPU core.
Furthermore, a single TCP connection cannot be handled by
multiple CPU cores in the Linux kernel.

Therefore, modern NICs have multiple internal queues.
Based on hashing of IP addresses and port numbers, packets
of the same TCP flow are always enqueued in the same queue.
Each of the queues has its own interrupt. This kind of hardware
support makes it possible that different TCP flows can be
handled by different CPU cores, if they are hashed into different
queues.

At the examined hardware a single CPU core is not able
to handle 100 Gbit/s. However, after intensive tuning (cf.
section III), 100 Gbit/s could be achieved with three TCP flows.
Figure 1 shows the throughput between a single sender and
a single receiver. In the beginning there is only a single TCP
flow, achieving about 43 Gbit/s. A second and a third flow are
started after 30 s and 60 s.

This experiment was conducted in the simplified testbed
setup shown in fig. 2. A detailed description of the hardware is
given at the end of this section (section II-B). Since all links
have a capacity of 100 Gbit/s, there cannot be any congestion
in the network. Unexpectedly, we still saw packet losses. After
excluding the switch as the reason for the packet losses, we
could trace them down to the receiver. A detailed explanation
how this can happen is given in section IV.

A. Performance Characteristics of Senders vs. Receivers

In order to track down how an overloaded sender differs
from an overloaded receiver, we set up a flexible testbed, shown
in fig. 3. It consists of four servers, each equipped with either
a single port or a dual port 100-gigabit Ethernet NIC. The
switch is partitioned via VLANs into two logical switches. A

Fig. 3: Flexible testbed configuration

physical cable connects the two logical switches and acts as the
bottleneck link. This way we get a logical dumbbell topology.
Dumbbell topologies are often used for congestion control
experiments. However, our logical dumbbell allows us to easily
reconfigure the setup; i.e., changing to which of the logical
switches a server is connected to, without any manual rewiring.
Experiments with a single sender are always conducted on an
end-system with a dual-port NIC (both ports in use), so that
the sending interface is never the bottleneck.

In this testbed we conducted experiments in the following
four setups:

1) Two-hosts: Single sender, single receiver (similar to fig. 1).
2) Three senders, one receiver; i.e., potentially overloaded

receiver
3) One sender, three receivers; i.e., potentially overloaded

sender
4) Two senders, two receivers; i.e., reduced load on sender

and receiver
Figure 4 shows the throughput and the number of retransmis-

sion events per second in the just mentioned setup. In all cases
four concurrent TCP flows were used in total (e.g., in case of
three senders/receivers, one of the hosts handles two flows, the
others a single flow, each). Each experiment was repeated 20
times, the error handles on the bar chart shows the standard
deviation; the retransmission events are shown as box-plots. If
packet loss occurred, often multiple packets were lost at once.
Therefore, we combined all packet losses that occurred within
100 ms as a single retransmission event. (This covers several
RTTs, which is not ideal. However, 100 ms was the highest
resolution in which retransmissions could be reported by the
traffic generator iperf3. We found it to be sufficiently high
to show the frequency of packet loss in the given cases and
how they correlate with the throughput.)

The experiments show that a single sender can reproducibly
achieve 100 Gbit/s, if the receivers are not (or only slightly)
overloaded. In experiment 3 (three receivers), the number of
retransmission events are significantly lower than in experi-
ment 1 (one receiver). But even though the number is quite
low, it is still above zero. Overloading the receiver leads to
large amounts of packet losses. Experiments 1 and 2 show an
increased number of packet losses and a reduced throughput.
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Fig. 4: Performance with different numbers of senders/receivers
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Fig. 5: Impact of the MTU on single flow performance

Experiment 4 (reduced load on sender and receiver) shows high
and stable throughput and low loss rates (error bars almost
non-existent). But it has to be noted that one sender with three
receivers shows a better performance (i.e., lower loss-rates) than
two senders with two receivers. This means that an overloaded
receiver is the weak spot for high speed data transmissions.

Along with the load that is created by the data rate itself, the
per-packet overhead is a significant factor, as well. Figure 5
shows throughput and retransmissions/s of a single flow with
regular packet sizes (1500 Bytes MTU) and so-called Jumbo
frames (9000 Bytes MTU). With regular sized packets only
25 Gbit/s can be achieved in conjunction with significantly
increased loss rates. Jumbo frames show a much better
performance in throughput and loss rates.

B. Hardware

Our testbed consists of the following hard- and software:
Four servers each equipped with a Supermicro X10DRW-i
mainboard. Two servers have an Intel Xeon E5-2630 v3 @
2.40GHz (dual socket) CPU, the other two the slightly faster
E5-2640 v3 @ 2.60GHz (dual socket) CPU. As NICs, Mellanox
ConnectX-5 (MT27800) dual-port and Mellanox ConnectX-4
(MT27700) either single or dual port were in use. We did not
observe any differences in performance in our experiments.
All NICs used the driver: MLNX OFED LINUX-4.5-1.0.1.0.
The servers used the operating system with Ubuntu Server
18.04 with Linux kernel 4.15.0-38-generic/4.15.0-42-generic.
Hardware offloading (TSO, GSO, GRO) is enabled by default,
additional tuning parameters are shown in table I (section III).
Non-Uniform Memory Access (NUMA) is enabled, hardware
details are shown in fig. 6; ens2f0 and ens2f1 are the two

... ...

Fig. 6: Memory / NUMA Configuration
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Fig. 7: Multi-core, multi-socket architecture

interfaces of the dual-port ConnectX-5 NIC. The figure shows
the output of lstopo of one of the servers (slightly modified
for better readability). The other servers are built similarly.

As switch a DELL EMC S4248FB with OPX-2.3.1 was
used. It consists of six 100 Gbit/s ports, two 40 Gbit/s ports
and 40 10 Gbit/s ports. A noticeable feature of this switch is
its deep packet buffer of 6 GByte. In our experiments about
1.25GByte were allocated to the bottleneck, which results
in a maximal queuing delay of approximately 100 ms. Each
server had one NIC port connected with 100 Gbit/s to the
switch. Since the number of 100 Gbit/s ports are limited, two
of the dual-port NICs were also connected to the 40 Gbit/s
ports. This enables experiments with a single sender with a
capacity > 100Gbit/s. If not noted otherwise, Linux’s default
congestion control CUBIC TCP [9] was used. iperf3 was
used as traffic generator.

III. TUNING

On multi-core, multi-socket systems, special attention has
to be given to the interrupt distribution and the placement of
the sending/receiving applications. An exemplary architecture
is depicted in fig. 7 (which resembles our hardware shown in
fig. 6). The selection of the CPU socket (section III-A) shows
the largest impact. But the distribution of applications and
interrupts on the CPU cores (i.e., within the socket) is also
relevant (section III-B). Furthermore, a number of additional
tuning parameters are presented in (section III-C).

A. Selection of the CPU Socket

At 100 Gbit/s, the interconnection between the CPU sockets
becomes a bottleneck. In our test systems this is the Intel
QuickPath Interconnect (QPI), other multi-socket architectures
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Fig. 8: Placement of interrupts and applications to sockets

have similar technologies. By experimentation we measured
a capacity of about 68 Gbit/s (in each direction) of the QPI,
conducted with the Intel Memory Latency Checker (mlc)1.
This speed depends on the CPU generation and clock speed.
Obviously, newer models achieve higher data rates. Still, since
NIC speeds are also increasing (400 Gbit/s and even 1 Tbit/s
are in reach), this will remain an issue to consider.

Placing the applications on the “wrong” socket affects the
performance differently than the placement of the interrupts.
We conducted four experiments where we placed the receiving
applications and the interrupts on either of the sockets, as
depicted in fig. 8. This shows which individual effect has
the placement for applications and interrupts and how they
interplay. Within the socket they were placed equally among
the CPU cores (cf. fig. 10, distribution 1). Again, the setup
shown in fig. 2 (single sender, single receiver, three TCP flows)
was used.

The NIC is physically connected to one specific socket. If
applications or interrupts are on a different socket, data has
to go over the QPI. In our testbed, the 100 Gbit/s NIC was
connected to socket 2 over PCI Express 3 x16. The PCIe
connection did not pose a bottleneck, as we saw in the exper-
iments. But this can also be calculated2: PCIe bandwidth =
PCI Width ·PCI Speed ·Encoding Scheme−1Gbit/s. Since an
128b/130b encoding is used, this results in: PCIe bandwidth =
16 · 8GT/s · 128/130− 1Gbit/s ≈ 125Gbit/s

As expected, best performance can be achieved in case 1,
when applications and interrupts are placed on socket 2, i.e.,
the same socket the NIC is connected to. In many runs,
100 Gbit/s and low loss rates could be achieved, however,
the aggregation over 20 runs (as shown in fig. 9) shows a
noticeable variance in throughput and loss rate. This will be
investigated in section III-B. Case 3 shows the lowest loss rates
but also significantly reduced throughput. Here, the interrupts
are handled locally, but the applications are on the other side
of the QPI. It can be expected that the TCP flow control slows
down the sender to match the processing speed of the receiver;

1https://software.intel.com/en-us/articles/intelr-memory-latency-checker
2https://community.mellanox.com/s/article/
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Fig. 9: Effects of placements on CPU sockets
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Fig. 10: Placement of interrupts, applications to cores

in this case: the speed of the QPI. This is exactly the task of the
TCP flow control. Note that this does not result in exactly the
same speed as measured with the Memory Latency Checker;
most likely due to overhead. Case 2 shows a different behavior.
Here, the TCP flow control does not seem to work properly.
The reasons are discussed in section IV, but in fig. 9 we can
already see the effects: a massively increased number of packet
losses and a severely reduced throughput. Case 4 shows similar
issues but better performance than case 2, most likely due
to cache locality. Furthermore, in case 2 we expect that data
has to cross the QPI twice (from the NIC on socket 2 to the
interrupt handler on socket 1 and then back to the application on
socket 2). This means that placing applications and interrupts
on the same CPU socket is an advantage. But placing the
interrupts on the “wrong” CPU socket can massively increase
the number of packet losses.

B. Distribution to Cores

The throughput variance in case 1 (fig. 9) is caused by inaus-
picious flow hashing (see section II). Figure 10 (distribution 1)
shows that the three cores where the applications are pinned
to, also have an interrupt of the NIC assigned. As explained
above, ideally each TCP flow is hashed to a different queue and
each queue has a separate interrupt. With three TCP flows this
means that at most three interrupts are actually in use in the
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Fig. 11: Effects of distribution to cores

experiments. If, by chance, these three interrupts are assigned to
different cores than the applications, the performance increases.
In order to back this theory, we conducted the following
experiments. As visualized in fig. 10, we moved all interrupts
away from the application cores and their hyperthreading twins
in distribution 2. Distribution 3 represents the cross check: All
interrupts happen on application cores. Distribution 1 is the
same setting than in the experiment above (case 1). The results
are shown in fig. 11.

With distribution 2, a throughput of 100 Gbit/s was reliably
achieved in all repetitions of the experiment (error bars almost
non-existent). While the number retransmission events/s is
slightly higher in distribution 2 than in distribution 1, the num-
ber of retransmissions/s (not shown in fig. 11) is significantly
lower (63 vs. 20 retrans./s). Conversely, distribution 3 shows
inferior performance with significantly reduced throughput and
a large amount of packet losses. It has to be noted that with
only three cores handling the interrupts, the probability that two
or even all three flows are handled by the same CPU core is
elevated. This explains the large difference between the median
and the 75% quantile of the retransmission events (rightmost
box plot). For maximal performance and high reliability, we
conclude, that applications should not be pinned to cores that
actively handle interrupts from the NIC.

C. Additional Tuning

Besides the selection of the CPU socket and the distribution
on cores, a number of additional tuning parameters affect
the performance. The usage of jumbo frames (i.e., using a
Maximum Transmission Unit (MTU) of 9,000 bytes instead of
the usual 1,500 bytes) significantly improves the performance.
However, jumbo frames are not supported over all paths. TCP
Segmentation Offload and the corresponding receive offload
(TSO, GSO, GRO), therefore, work with oversized packets only
within the end-systems. These oversized packets are then re-
segmented at NIC or driver level. However, in our experiments,
the combination of jumbo frames and segmentation offload
was beneficial over segmentation offload alone. Segmentation
and receive offload (TSO, GSO, GRO) are enabled by default
and we kept it this way.

The entire set of tuning parameters is shown in table I. In
the following, we briefly discuss some of the parameters. By
default the boundaries for the TCP flow control are too small for

high bdp networks ([r/w]mem_max, tcp_*mem). Unlike
[8] we observed a reduction of packet loss by enlarging the
rx-ring to its maximum size. tcp_no_metrics_save is
relevant to ensure independent experiment runs; it is no actual
tuning parameter. The qdisc fq is used since it provides an
efficient packet pacing feature, which reduces the burstiness of
the data stream. As default usually pfifo_fast (a simple
FIFO queue) or fq_codel is set. It has to be noted that
fq_codel is an Active Queue Management mainly designed
to be used in routers and switches, thus, it also may deliberately
drop packets within the end-system.

Attribute Default Tuned

Maximum Transmission Unit 1500 9000
RX-Ring 1024 MAX [8192]
net.ipv4.tcp_timestamp 1 1
net.core.wmem_max 212992 2147483647
net.core.rmem_max 212992 2147483647
net.ipv4.tcp_mem 140964 187954 281928 2147483647

2147483647
2147483647

net.ipv4.tcp_rmem 4096 87380 6291456 4096 87380
2147483648

net.ipv4.tcp_wmem 4096 16384 4194304 4096 87380
2147483648

net.core.netdev_max_backlog 1000 250000
net.ipv4.tcp_mtu_probing 0 1
net.ipv4.tcp_no_metrics_save 0 1
net.core.default_qdisc fq_codel fq
CPU Governor powersave performance
Irqbalance enabled disabled
TSO, GSO, GRO enabled enabled

TABLE I: Tuning Parameters

IV. PACKET LOSS IN THE END-SYSTEM

TCP’s flow control is designed to protect the receiver
from overload. It uses a sliding window that is continuously
announced to the sender. This window reflects the available
capacity in the TCP receive buffer. Consequently, a packet is
only sent if there is already space allocated for it in the receive
buffer. Still, we observed packet loss within the receiving end-
system, caused by overload. These losses happen at lower
layers.

Figure 12 visualizes the path of a packet from the sender to
the receiver, including the protocol stacks in the end-systems.
Origined in the application, data is copied to the TCP send
buffer. After the data is segmented into packets, the packets
are enqueued into the so-called Queuing Disciplines (qdiscs).
When they are scheduled to be transmitted, the packets are
copied into the TX-Ring, a data structure that can be accessed
by the operating system and the NIC (via direct memory access
(DMA)). In fact, the ring only contains pointers to the packets,
which are fetched directly from the main memory. If the TX-
ring is full, packets are not lost but stay in the qdisc and can
be enqueued at a later time.

In intermediate systems (i.e., routers and switches) packets
can be dropped. This usually happens in a congestion situation,
e.g., when the buffer at a bottleneck overflows. In this case we
speak of a congestion loss.
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At the receiver, the NIC places the packet into the RX-ring
(analogous to the TX-ring at the sender). However, there is
a distinctive difference. If the RX-ring overflows (i.e., it is
still full when new packets arrive), packets are dropped. Since
the TCP flow control only manages the TCP receive buffer
but not the RX-ring, it cannot prevent these losses; i.e., the
RX-ring may be full while there is plenty of space in the TCP
receive buffer. Increasing the size of the RX-ring can reduce
the number of packet losses. Packet loss in the RX-ring is
logged; thus, we can distinguish these losses from other kinds
of losses (e.g., caused by bit errors) in our experiments.

Another buffer that is not managed by the TCP flow control
is the TCP backlog. This is an auxiliary buffer for situations
when the receive buffer data structure is locked (i.e., to prevent
concurrent read and write access). Packets can also be lost if
the TCP backlog overflows. These losses are also logged.

Once the packet reaches the TCP receive buffer, it is safe.
In normal operation this buffer never overflows. There are rare
cases when even the TCP receive buffer may overflow, despite
TCP flow control. Since the flow control window announces
free buffer space for payload data, the actual buffer has to be
sized larger to accommodate overhead, such as packet headers.
If the overhead is unexpectedly large (e.g., many small packets),
the buffer may overflow. In practice this corner case was not
relevant in our experiments.

V. CONGESTION CONTROL

For congestion control algorithms, 100 Gbit/s networks are
challenging due to several reasons. As mentioned above, a
higher maximum speed increases the range of possible network
speeds. Moreover, the following points create an area of tension:

• Non-congestion related packet loss can happen even in
wired networks.

• We do not want an over cautious congestion control to
slow down our high volume data transfers.

• We do not want a 100 Gbit/s sender with an aggressive
congestion control to overstrain slower networks.

The issue of non-congestion related packet loss is already
known from shallow buffered switches and middleboxes. The
Science DMZ [3] approach advises to create special zones at the
edge of the network for high volume data transfers. The goal is
to eliminate as many sources for non-congestion related packet
loss as possible. The rationale is that each packet loss can

significantly slow down data transfers over wide area networks.
Google noticed that commodity switches are often shallow
buffered. This means that the switch buffer is only a tiny fraction
of the bandwidth-delay product. Small bursts, which are caused
by aggregation effects and observed in practice, can already
overload the bottleneck buffer. In this case, packet loss actually
happens at the intermediate systems, but it is not useful to treat
this short-term overload situation as (persistent) congestion.
Therefore, the congestion control BBR [2] was developed. It
addresses the situation in two ways: 1.) The outgoing data is
paced. This means the burstiness of the outgoing data stream
is reduced and data is sent at an even rate. 2.) Packet losses
are no longer considered an indicator for congestion.

BBR, as designed in [2], is a very aggressive congestion
control. Experiments have shown that this approach is in fact
able to avoid underutilizing a fast network. However, BBR can
also cause massive amounts of congestion related packet loss,
i.e., massively overload a slower network [7].

In our own experiments we used a deep buffered switch
(buffer size: 1.25GByte =̂ 100ms queuing delay), in order to
focus on additional sources of packet loss, apart from shallow
buffered switches. Having discovered packet loss within the
receiving end-systems, shows that the Science DMZ approach
alone is not sufficient, since a Science DMZ only minimizes
packet loss caused by intermediate systems.

A. Effects of Packet Loss on Existing Congestion Controls

CUBIC TCP is the default congestion control in all major
operating systems (Linux, Mac, Windows) and can achieve
very high throughput, if bottleneck buffers are reasonably sized
and if packet loss is only caused by congestion (i.e., no random
loss). Sections II and III showed that non-congestion related
packet loss, indeed, can noticeably impact the throughput of
CUBIC TCP even in a LAN setup with a round-trip-time (RTT)
below 1 ms. With intensive tuning the number of packet losses
can be significantly reduced. However, they could not be fully
avoided in our experiments. In real world deployments, we
expect that administrators will often not have the time for such
an extensive tuning. Therefore, we expect noticeable loss-rates
to be common for high-speed data transfers.

In all following experiments, tuning as shown in table I
is applied. Figures 13a and 13b show the behavior of a
CUBIC TCP flow under different circumstances. The plots
show the CWnd and RTT of a single TCP flow; in total there
were four TCP flows active in parallel. Full link utilization
was achieved in both cases. In fig. 13a two senders and two
receivers were used and the receivers produced a very low
amount of packet losses. CUBIC TCP’s distinctive shape of the
CWnd can be clearly seen. As expected for CUBIC TCP, the
bottleneck buffer is repeatedly filled up to exhaustion, then,
the CWnd is reduced. This can be seen at the course of the
RTT. Due to the queuing delay the RTT is increased. At an
RTT of about 100 ms the buffer is exhausted and a congestion
related packet loss happens. In fig. 13b only a single receiver
was used which produced a larger amount of packet losses.
Even though 100 Gbit/s could be achieved (cf. fig. 13c), it is
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Fig. 13: CUBIC TCP (LAN)

evident that CUBIC TCP’s behavior is completely dominated
by the lossy receiver, so the CWnd is reduced to comparatively
low values. Only a small queuing delay builds up. There are
no congestion related packet losses, at all.

It can be argued that the lossy receiver is a blessing for
the overall performance due to the reduced delay. In this
very experiment this is actually true. But the experiment
shows that the workings of the congestion control is impaired.
CUBIC TCP is not able to raise its CWnd over a certain
level. But on wide area networks with larger RTTs, larger
CWnd values are required to achieve the same throughput (i.e.,
ratesent = CWnd

RTT ). It can be expected that the data transfer
is slowed down well below 100 Gbit/s at higher RTTs. In
order to confirm this conclusion we set-up a delay emulator
that emulates a WAN network with 20 ms base-RTT (RTT if
buffers are empty). The same delay emulator3 as in [6] and
[7] was used. Since it only supports 10 Gbit/s, we configured
asymmetric routing in our testbed. The delay emulator was only
included on the path from the receivers to the senders. Since
only ACKs were sent over this path, a capacity of 10 Gbit/s
was more than enough (typical data rate on the reverse path:
50 Mbit/s). Figure 14 shows a run with two senders (two flows
per sender) and one receiver that creates a noticeable amount
of non-congestion related packet loss. It can be clearly seen
that the CUBIC TCP flows are affected by these packet losses.
The CWnds of all four flows (fig. 14a) are often reduced even
though the bottleneck buffer and/or the bottleneck link have
residual unused capacities. Consequently, the link utilization
often falls well below 100 Gbit/s (fig. 14b).

B. Novel Congestion Controls
1) BBR: BBR was not able to achieve 100 Gbit/s in the same

experiment setup as above (no delay emulator, four TCP flows,
tuning from table I applied). This was caused by a bug in the
BBR code in the Linux kernel v4.15 which we used. It limited
the single flow throughput in low RTT networks to ≈ 10Gbit/s.
With > 10 flows, 100 Gbit/s could be achieved. This shows
that 100 Gbit/s are also a challenge on the implementation level
of congestion control algorithms.

Apart from this issue, BBR works exceptionally well in this
setup. Due to the small base-RTT of < 1ms, BBR creates

3https://git.scc.kit.edu/TM/DPDK_AQM_Switch

only a very small queuing delay, yet it is still able keep a high
throughput (see fig. 15a).

However, in earlier experiments at 10 Gbit/s [7] it was shown
that BBR will behave different at larger base-RTTs: BBR often
produces a queuing delay that roughly equals the base-RTT;
hence, doubling the effective RTT. Indeed, experiments with
delay emulator (20 ms base-RTT) show that the same behavior
can be observed at 100 Gbit/s (cf. fig. 15b). The noticeable
bandwidth drops every 10 s are caused by BBR’s “Probe RTT”
phase where the amount of inflight data is reduced to four
packets, in order to drain the queues. Apart from that, BBR
achieves full link utilization, but also causes significant queuing
delay. BBR’s aggressiveness is most pronounced when the
buffer capacity is below one bdp [7]. To solve these issues,
Google has announced to work on “BBRv2”.

2) TCP LoLa: TCP LoLa [6] is another experimental con-
gestion control that is under active development. TCP LoLa’s
goals are to enable a high throughput while keeping a low
queuing delay as well as to provide a convergence to fairness
among competing TCP LoLa flows. Due to its delay based
approach it can be considered less aggressive than most other
congestion controls, including BBR and CUBIC TCP.

As shown in fig. 16a, TCP LoLa limits the queuing delay
slightly above 5 ms (RTT ≈ 6ms; LAN setup, low loss rate).
In contrast to BBR, the induced queuing delay of TCP LoLa
is a configurable parameter and does not depend on the base-
RTT. Thus, it is larger than BBR’s queuing delay at very low
base-RTTs, but will not grow in wide area networks.

Since TCP LoLa detects congestion based on queuing delay,
it does not rely on packet loss as congestion signal. But as
a precaution, TCP LoLa still reacts on packet loss similar to
CUBIC TCP. Therefore, TCP LoLa is negatively affected by
non-congestion related packet loss, too. Experiments using
the delay emulator (20 ms base-RTT) show that this can
significantly reduce the throughput in a WAN setting (see
fig. 16b).

In order to investigate the potential of TCP LoLa’s delay
based approach in the face of lossy end-systems, we exper-
imentally modified TCP LoLa to not decrease its CWnd on
packet loss. Figure 16c shows improved stability and high link
utilization in face of non-congestion related packet loss.
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Fig. 15: BBR

Figures 16d to 16f show the CWnds in the above experiments.
The LAN scenario without losses (fig. 16d) is shown for
comparison. For better readability only a single flow is shown.
Due to the losses in fig. 16e TCP LoLa falls back to a
CUBIC TCP-like behavior, while in fig. 16f the distinctive
TCP LoLa behavior is mostly restored. Thus, the CWnds
oscillate in a small corridor that keeps the link fully utilized
but the queuing delay low. Also the CWnds of the four flows
approach each other, due to TCP LoLa’s fairness properties.

This experiment shows the potential of TCP LoLa and other
non loss-based approaches to be well suited for high volume
data transfers at high speeds. However, it has to be kept in
mind, that simply ignoring packet loss as congestion signal is
not expedient, as shown in the case of BBR. TCP LoLa, for
example, defines a queuing delay above 5 ms as congestion.
On shallow buffered switches such a queuing delay can never
be achieved. Therefore, further research is needed to detect
and adapt to shallow buffered bottlenecks.

VI. RELATED WORK

High-speed data transmissions is an ongoing field of
research, that has to adapt to altering challenges that come
with each new hardware generation. Since the performance of
different hardware components evolves in distinct ways, this
is not a simple scale-up. The Fasterdata Knowledge Base4

from ESnet is a valuable source for high performance data
transmissions and tuning, as well as experimental evaluations

4http://fasterdata.es.net/

such as [8]. Along with other tuning guides5 the information is
often focused on how a good performance can be achieved. We
built on this work and extended it toward the questions: Why
is a certain configuration superior and what does this mean for
further research?

There is recent focus on improving the efficiency of network
operations by bypassing the operating system kernel, such as
Intel DPDK6, Netmap [10], or XDP7. These approaches are
very effective for certain kinds of tasks. The packet generator
MoonGen [5], for example, built upon DPDK is able to
generate packets significantly faster than traffic generators (like
iperf3) or real world applications using TCP. But since these
performance improvements stem from bypassing the operating
system’s networking stack, they lack, i.a., TCP protocol features
and congestion control.

The Science DMZ [3] approach is used in practice to improve
the throughput for high volume data transfers of scientific data.
It focuses on eliminating all obstacles within the end-to-end
path that may cause packet loss. Our research assesses the
components in this path that cannot be eliminated: the end-
systems. GridFTP8 is often used in practice to parallelize large
file transfers. Such tools can directly benefit from our results.

Congestion control research is, again, a very active field of
research. BBR [2], L4S [1], PCC [4], and TCP LoLa [6] are
under active development and under ongoing discussion in the
IETF/ICCRG. We consider our research a valuable input into
these discussions.

VII. CONCLUSION

Network bandwidth grows significantly faster than single
core CPU performance. Therefore, end-system tuning becomes
increasingly important to exploit the available transmission
capacities. In this paper, we brought existing server hardware to
its performance limits and investigated which bottlenecks arise
in the end-systems. We showed that overloaded receivers impact

5https://access.redhat.com/sites/default/files/attachments/20150325\
_network\_performance\_tuning.pdf, https://community.mellanox.com/s/article/
performance-tuning-for-mellanox-adapters

6https://www.dpdk.org/
7https://www.iovisor.org/technology/xdp
8http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/
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Fig. 16: TCP LoLa

performance stronger than overloaded senders. For multi-socket
CPUs, hardware specific tuning is required. Internally, the
network interface card is usually connected to one of the
sockets directly. Placing interrupts or applications on a different
socket results in massive performance penalties. Misplacing the
applications leads to a common pattern: Since the processing
power of the receiver is below the network capacity, the
TCP flow control slows down the transmission rate. But we
showed that this mechanism does not work reliably if the
interrupts are placed on the wrong socket. In this case, a
significant amount of packets are dropped within the receiving
end-system. Such packet losses, in turn affect the congestion
control. CUBIC TCP, the default congestion control in all
major operating systems, cannot cope with such non-congestion
related packet loss. This limits the achievable performance,
especially in wide area networks. Newer approaches exist that
may tolerate non-congestion related packet loss. But, additional
research is necessary to reliably serve 100 Gbit/s and beyond.
Moreover, there is a field of tension about the balancing
between aggressively utilizing available capacity, e.g., even
in the face of packet loss, and carefully avoiding to overload
slower network paths. Congestion control research that looks
beyond packet loss as congestion signal seems to be on the
right track, but care has to be taken if packet losses are actually
congestion related.
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