
TCP LoLa: Congestion Control for
Low Latencies and High Throughput

Mario Hock, Felix Neumeister, Martina Zitterbart, Roland Bless
Karlsruhe Institute of Technology

Karlsruhe, Germany
E-Mail: mario.hock@kit.edu, felix.neumeister@student.kit.edu, zitterbart@kit.edu, bless@kit.edu

Abstract—TCP LoLa is a new delay-based congestion control
that supports both, low queuing delay and high network utiliza-
tion in high speed wide-area networks. This is particularly useful
for traffic mixes consisting of bandwidth demanding and delay
sensitive flows (e.g., long file transfer and interactive “web 2.0”
traffic). TCP LoLa keeps the queuing delay at the bottleneck link
low around a fixed target threshold value. This target value is
independent from the number of flows sharing the bottleneck.
TCP LoLa achieves high link utilization and attains convergence
to fairness even among flows with different round-trip times, due
to its novel mechanism called “fair flow balancing”.

I. INTRODUCTION

Congestion control is an essential mechanism to protect the
Internet from severe overload situations. Today’s widely used
loss-based congestion control algorithms, however, adversely
affect everyone’s performance on the Internet: the inflicted
latency may become unnecessarily high. This affects inter-
active and transaction-based applications (e.g., Voice-over-IP,
multiplayer online games and “web 2.0” traffic).

In this paper, we present TCP LoLa, a new delay-based
congestion control that limits queuing delay up to a fixed
target threshold value while striving for a high utilization of
the bottleneck link. TCP LoLa is, therefore, especially useful
for traffic mixes consisting of bandwidth-demanding as well
as delay-sensitive applications. Furthermore, TCP LoLa aims
at providing flow rate fairness independent of the round-trip
times of competing flows. The convergence to fairness is
particularly challenging for low delay congestion control. If
this process is not carefully coordinated among the senders
either underutilization or high queuing delays occur. TCP LoLa,
therefore, introduces a novel fairness mechanism called “fair
flow balancing”. Currently TCP LoLa focuses on wired high-
speed wide-area networks but is also scalable to lower speeds.

II. CONTROLLING THE AMOUNT OF IN-FLIGHT DATA

A major challenge of low delay and high throughput
congestion control is to carefully control the amount of in-
flight data (i.e., data that is sent but not yet acknowledged). In
order to achieve a full utilization of the bottleneck link without
any queuing delay the total amount of in-flight data has to
exactly match the bandwidth delay product. If it is too small,
the bottleneck link cannot be fully utilized. If it is too large,
the excess in-flight data has to be queued. If this situation
persists, a standing queue [9] builds up.

To control the amount of in-flight data a flow is allowed to
have, TCP LoLa uses a congestion window (CWnd). Based on
round-trip time (RTT) measurements that are already conducted
by TCP, each TCP LoLa flow calculates the following estimates
(details given in section IV):

• R̂TTnow : RTT including the standing queue
• R̂TTmin : RTT without any queuing delays
• Q̂delay : Queuing delay caused by the standing queue
• Q̂data : Amount of data the flow itself has queued at the

bottleneck

To achieve high throughput and low delays TCP LoLa
deliberately tries to create a small standing queue and measures
the according queuing delay. On the one hand, the existence
of a standing queue indicates that the overall amount of in-
flight data is sufficient to fully utilize the bottleneck link. On
the other hand, the resulting queuing delay gives a detailed
congestion signal, since it directly corresponds to the excess
in-flight data.

To keep the standing queue low but above zero, TCP LoLa
introduces two thresholds for Q̂delay : Qlow and Qtarget that
are interpreted as follows:

• Q̂delay ≤ Qlow : No standing queue detected, link is most
likely underutilized, thus, CWnd should be increased.

• Qlow < Q̂delay ≤ Qtarget : Small standing queue, high
throughput and low delay.

• Q̂delay > Qtarget : Congestion, CWnd has to be reduced.

This will result in a high utilization of the bottleneck link
and a low queuing delay, but will not lead to fairness among
the flows. Therefore, we developed fair flow balancing, a novel
mechanism that complements the just described strategy in
order to provide a convergence to fairness (details given in
section III-C).

III. TCP LOLA

As common in congestion control all competing TCP LoLa
flows work together to achieve the design goals. If there is
a significant amount of non-TCP LoLa traffic in the network,
coexistence mechanisms are required, e.g., [7]. Moreover, Qlow

and Qtarget have to be identical for all competing flows. Thus,
for Internet usage they have to be globally standardized.

Figure 1 shows the main states and state transitions of
TCP LoLa, which will be explained in the following.

c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. Published at LCN 2017, http://ieeexplore.ieee.org/document/8109356/



[fixed waiting time] /

Slow Start Cubic Increase Fair Flow Balancing

CWnd Hold

Q lowdelayQ^ >

Q targetdelayQ^ >
2 * Qlow>

minRTTmaxRTT -

Action: Tailored Decrease

Fig. 1: Congestion control states

A. Slow Start

Similar to other congestion controls TCP LoLa enters the
slow start state after its initial start or after a retransmission
timeout. In addition to that, TCP LoLa keeps track of the
minimal and maximal measured RTT. Once the difference is
larger than 2 ·Qlow , it transits from slow start to cubic increase.

B. Cubic Increase

During cubic increase TCP LoLa uses the same increase
function as CUBIC TCP. In contrast to CUBIC TCP, TCP LoLa
uses this function only if the potential bottleneck link is most
likely not fully utilized, i.e., no standing queue is detected.

CWnd(t) = C · (t−K)3 + CWndmax (1)

CWndmax : size of CWnd before last reduction, t: time since
last window reduction, C: unit-less factor (C = 0.4, as in
CUBIC TCP). K is recalculated whenever CWnd has to be
reduced, details given in section III-E.

C. Fair Flow Balancing

The basic idea behind the RTT-independent flow rate fairness
of TCP LoLa is that each flow should keep a low but similar
amount of data (X) in the bottleneck queue. This results in
correspondingly similar rate shares. To keep the overall queuing
delay between the thresholds Qlow and Qtarget , X has to be
dynamically scaled to the number of flows and the bottleneck
bandwidth. Both values are not known to the end systems.
Fair flow balancing, therefore, makes X time-dependent (with
t = 0 when fair flow balancing is entered; φ is a constant):

X(t)[Byte] = (
t[ms]

φ
)3 (2)

CWnd is adapted as described in fig. 2. Flows with a larger
rate share typically have a larger Q̂data than flows with a
smaller share. If a flow’s rate share is above the fair share,
Q̂data > X(t) applies, thus the flow may not increase its
CWnd during fair flow balancing.

if Q̂data < X(t) then
CWnd ← CWnd + (X(t)− Q̂data)

else
CWnd ← CWnd . kept unchanged

end if

Fig. 2: CWnd adjustment during fair flow balancing

Since an appropriate value for X is not known in advance,
X(t) is a monotonically increasing function. In order to avoid

falling below Qlow , CWnd is never decreased during fair flow
balancing. An invocation of fair flow balancing, from entering
the state until it is left, will be denoted as a round.

Fair flow balancing requires that all competing flows enter
and leave it at similar points in time. Therefore, the whole
TCP LoLa design puts a strong emphasis on synchronized state
changes.

D. CWnd Hold

A flow leaves the fair flow balancing state when it detects
that Q̂delay > Qtarget . After that it keeps its CWnd unchanged
for a fixed amount of time tsync (default value: 250 ms). This
means that this flow will not increase its amount of in-flight
data and, thus, will not increase the level of congestion at the
bottleneck. The hold time is necessary to ensure that all flows
quit the current round of fair flow balancing. After the hold
time has elapsed, tailored decrease is performed.

E. Tailored Decrease

Tailored decrease adjusts the CWnd reduction to the amount
of congestion: CWnd ← (CWnd − Q̂data) · γ

This means each flow reduces its CWnd by Q̂data – this
should already empty the queue – but since TCP LoLa relies
on good R̂TTmin values, CWnd is further reduced by the
factor γ < 1 to ensure that the queue will actually be drained
completely. To achieve this, K is calculated as follows:

K = 3

√(
CWndmax − R̂TTmin ·

CWndmax

R̂TTnow

· γ
)
/C (3)

IV. QUEUING DELAY MEASUREMENTS

The size of the standing queue depends on the size of
the CWnds. In addition to that bursty traffic or short time
cross traffic can increase the queuing delay. To filter out these
interfering influences TCP LoLa uses a minimum filter of all
measured RTT values within a certain time interval tmeasure :

R̂TTnow = min{RTT (tk)|tk ∈ [t− tmeasure , t]} (4)

RTT (tk) is an individual RTT measurement at time tk. It is
important for the fairness that tmeasure does not depend on
a flow’s RTT. Otherwise the filter functions of senders with
different RTTs would have different granularities. Based on
R̂TTnow the following values are calculated:

R̂TTmin ← min(R̂TTmin , R̂TTnow ) (5)

Q̂delay = R̂TTnow − R̂TTmin (6)

For the estimation of Q̂data we apply the function proposed
in TCP Vegas:

Q̂data = Q̂delay ·
CWnd

R̂TTnow

(7)

To cope with changing path characteristics (e.g., route
changes), the validity of R̂TTmin is checked after tailored
decrease. R̂TTmin is reset, if no R̂TTnow value close to
R̂TTmin has been measured for a certain number (e.g., 100)
of tailored decreases.



The Q̂delay values of flows that share the same bottleneck
will usually be similar, since the queuing delay affects all
flows in the same way. This synchronizes the state changes of
TCP LoLa across all competing flows. Still, the Q̂delay values
will usually not be exactly identical, since RTT measurements
are always noisy and RTT measurements are not taken at
exactly the same points in time.

V. EVALUATION

A. Evaluation Set-up

We implemented TCP LoLa as Linux kernel module1 and
evaluated it in a physical testbed, shown in fig. 3.

Sender DPDK-Switch HP 5920 Receiver

3 * 
10 Gbit/s

3 * 
10 Gbit/s

10 Gbit/s

WAN-Link,
21 ms RTT

Fig. 3: Testbed

A DPDK-based software switch2 was used at the bottleneck
link. It provides detailed control over its buffers and also
contains a delay emulator that was used to experiment with
different RTTs. For experiments at lower speeds we connected
an additional 100 Mbit/s link directly between the DPDK-switch
and the receiver (due to transceiver speed limitations).

Sender, receiver and the DPDK-switch run on Ubuntu 16.04
and are equipped with two Intel Xeon E5-2630 v3 CPUs
and a 4-port Intel X710 10 Gbit/s NIC. The sender uses the
queuing discipline “fq”, which provides packet pacing. Traffic
is generated with iperf3. RTT and CWnd measurements are
collected with TCPlog3 using the tcpprobe kernel module;
throughput values with CPUnetLOG4. At the receiver the “RX
rings” of the 10 Gbit/s NICs were increased from 512 packets
to 4096 packets to avoid packet loss within the end system.

For all experiments in this paper we used the following
parameters for TCP LoLa: Qlow := 1ms, Qtarget := 5ms,
tsync := 250ms, tmeasure := 40ms, γ := 973/1024 ≈ 95%.
φ ≈ 35. These values have not been thoroughly optimized.
Finding good values for a broad range of networking scenarios
is subject of future work.

Unless stated otherwise the experiments use the following
setup: Two flows transmit data from the sender to the receiver.
The flows are sent over different network interfaces. Flow 1
starts at second 0 , flow 2 starts at second 20 . The bottleneck
buffer is 100 MByte (=̂80ms queuing delay at 10 Gbit/s). Base-
RTT denotes the RTT with empty buffers, i.e., for most cases the
WAN delay of 21 ms. For other base-RTTs the delay emulator
was used. We repeated each experiment at least ten times. In
the following, we always show the results of a representatively
chosen single run for clarity.

1https://git.scc.kit.edu/TCP-LoLa/TCP-LoLa_for_Linux
2https://git.scc.kit.edu/TM/DPDK_AQM_Switch
3https://git.scc.kit.edu/CPUnetLOG/TCPlog
4https://git.scc.kit.edu/CPUnetLOG/CPUnetLOG

B. Basic Characteristics of TCP LoLa

Figure 4 shows the basic characteristics of TCP LoLa. High
link utilization and flow rate fairness can be observed in fig. 4a.
This is also achieved if flows have different RTTs, as shown
in fig. 4d (flow 1: 21 ms, flow 2 101 ms). Figure 4b shows the
CWnds of the two flows in the period [16 s . . . 60 s] to better
illustrate the dynamics of fair flow balancing; each round is
highlighted in gray. It can be observed that flow 1 keeps its
CWnd unchanged during fair flow balancing, while flow 2
increases its CWnd according to the cubic slope of X(t). After
four rounds a fair rate share is achieved. The short periods
where flow 1 increases its CWnd corresponds to the cubic
increase that follows a tailored decrease.

The limited and low queuing delay is shown in fig. 4c
for different base-RTTs. The lines close to 21 ms show the
RTT observed by flow 1 (green) and flow 2 (blue) in the just
described experiment. Since both flows traverse the same buffer,
they experience the same queuing delay, so the lines are nearly
identical. It can be seen that the RTT periodically reaches the
target (26 ms), then the CWnds are reduced and RTT falls back
to the base-RTT of about 21 ms. This behavior is independent
of the actual base-RTT. We conducted similar experiments that
only differ in their base-RTT: 5 ms (no WAN link), 61 ms, and
101 ms respectively. The corresponding measured RTT values
are shown as gray lines.

Results in fig. 5 show that TCP LoLa is also scalable to
lower speeds. Figures 5a and 5b show throughput and RTT of
two TCP LoLa flows at a 100 Mbit/s bottleneck. Still it achieves
high link utilization, fair flow rates, and a low queuing delay.

C. Many Starting Flows

TCP LoLa can also keep the delay low if multiple flows are
started consecutively and run in parallel. Figure 6 shows the
RTT and the CWnds of the flows in the following scenario:
Every four seconds a new flow is started up until 18 flows
run in parallel, each flow lasts for 200 s. So for the first 68 s,
flows are started successively, afterwards all 18 flows run in
parallel until second 200 . The measured RTT values are nearly
identical for all flows, so we show the RTT measurements
from two of the flows only.

The queuing delay is kept around Qtarget (see fig. 6b) and
no packet loss was observed. Newly starting flows quickly
converge toward a fair rate share, as can be seen in fig. 6a.
Here, the CWnds of the flows are shown, but since all flows
have the same RTT, equal CWnds lead to equal throughput.

VI. RELATED WORK

Since the introduction of TCP a large amount of congestion
controls have been developed. A comprehensive survey can
be found in [1]. TCP Reno and CUBIC TCP, the former and
current standard congestion controls in Linux, are both loss-
based. Compound TCP [10] (standard for Microsoft) is a hybrid
congestion control, i.e., incorporates delay-based and loss-based
elements but does not focus on low delay. TCP Vegas [3] is
purely delay-based and can achieve low delays in many cases.
Its queue size estimation is reused in many other congestion



0 20 40 60 80 100 120 140

Time (s)

0 

2G 

4G 

6G 

8G 

10G 
T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

Flow 2

Flow 1

(a) Throughput and Fairness (b) CWnd (zoom) – fair flow balancing (c) RTT (different Base-RTTs)

0 50 100 150

Time (s)

0 

2G 

4G 

6G 

8G 

10G 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

Flow 2

Flow 1

(d) Flows with different RTTs

Fig. 4: Behavior of TCP LoLa (10 Gbit/s)

0 20 40 60 80 100 120 140

Time (s)

0 

20M 

40M 

60M 

80M 

100M 

T
h
ro

u
g
h
p
u
t 

(B
it

/s
)

Total

Flow 2

Flow 1

(a) Throughput

0 20 40 60 80 100 120 140

Time (s)

0

20

40

60

80

100

120

140

R
T
T
 (

m
s)

(b) RTT

Fig. 5: TCP LoLa, 100 Mbit/s bottleneck link

0 50 100 150 200

Time (s)

0

5000

10000

15000

20000

C
W

n
d
 (

M
S
S
)

(a) CWnds

0 50 100 150 200

Time (s)

0

20

40

60

80

100

120

R
T
T
 (

m
s)

Flow 1

Flow 2

(b) RTT (only two flows shown)

Fig. 6: Many starting TCP LoLa flows (10 Gbit/s)

controls, e.g., Compound TCP, YeAH TCP [2] and TCP LoLa.
CDG [6] is based on delay gradients but has a TCP Reno-like
additive increase that is not scalable for high-speed networks.
BBR [5] focuses on high throughput even in networks with
small buffers and tries to maintain a reasonable queuing delay.
It can, however, produce increased delays or massive packet
loss in certain scenarios as shown in [8].

AQMs like Codel [9] are a network-based approach to
keep a low queuing delay even in the presence of loss-based
congestion controls. With L4S [4] (Low Latency, Low Loss,
Scalable throughput) an approach is proposed that should
provide ultra-low latency for all applications. L4S, however,
requires specialized AQMs.

VII. CONCLUSION

This paper presents TCP LoLa, a new congestion control for
wide-area networks that primarily aims at keeping the queuing
delay low at a fixed target and simultaneously achieves high
throughput and high link utilization. Additionally, it avoids
packet losses and is scalable from lower speed networks (i.e.,
100 Mbit/s) to high speed networks (i.e., 10 Gbit/s). It achieves
flow rate fairness independent of the flows’ RTTs due to its
new mechanism fair flow balancing. TCP LoLa is implemented
as a Linux kernel module and has been evaluated in a physical
testbed with 10 Gbit/s.

TCP LoLa is under active development. Next steps include
modifications toward a fair coexistence with loss-based con-
gestion controls, if AQM is present at the bottleneck. Also,
more extensive evaluations are planned. Furthermore, we want
to develop explicit congestion feedback like ECN, but tailored
to delay-based congestion control, in order to improve the
performance of TCP LoLa by reducing noise and in order to
cope with multi bottleneck scenarios.

ACKNOWLEDGMENT

This work was supported by the bwNET100G+ project,
which is funded by the Ministry of Science, Research, and
the Arts Baden-Württemberg (MWK). The authors alone are
responsible for the content of this paper.

REFERENCES

[1] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-Host
Congestion Control for TCP,” Communications Surveys Tutorials, IEEE,
vol. 12, no. 3, pp. 304–342, Third 2010.

[2] A. Baiocchi, A. P. Castellani, and F. Vacirca, “YeAH-TCP: Yet Another
Highspeed TCP,” in Int. Workshop on Protocols for Future, Large-Scale
and Diverse Network Transports (PFLDNeT), vol. 7, 2007, pp. 37–42.

[3] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New
Techniques for Congestion Detection and Avoidance,” in SIGCOMM ’94.
New York, NY, USA: ACM, 1994, pp. 24–35.

[4] B. Briscoe, K. D. Schepper, and M. Bagnulo, “Low Latency, Low
Loss, Scalable Throughput (L4S) Internet Service: Architecture,”
Internet Engineering Task Force, Internet-Draft draft-briscoe-tsvwg-
l4s-arch-02, Mar. 2017, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-l4s-arch-02

[5] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” ACM Queue, vol. 14,
no. 5, pp. 50:20–50:53, Oct. 2016.

[6] D. A. Hayes and G. Armitage, “Revisiting TCP Congestion Control
Using Delay Gradients,” in NETWORKING’11. Springer-Verlag, 2011,
pp. 328–341.

[7] M. Hock, R. Bless, and M. Zitterbart, “Toward Coexistence of Different
Congestion Control Mechanisms,” in 2016 IEEE 41st Conference on
Local Computer Networks, November 2016, pp. 567–570.

[8] ——, “Experimental Evaluation of BBR Congestion Control,” in 2017
IEEE 25th International Conference on Network Protocols (ICNP), Oct
2017.

[9] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM Queue,
vol. 10, no. 5, pp. 20–34, May 2012.

[10] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A Compound TCP
Approach for High-Speed and Long Distance Networks,” in INFOCOM
2006. 25th IEEE International Conference on Computer Communications.
Proceedings, April 2006, pp. 1–12.


